

DATA STRUCTURES AND
ALGORITHMS

For
COMPUTER SCIENCE

.

SYLLABUS
Programming and Data Structures: Programming in C. Recursion. Arrays, stacks,

queues, linked lists, trees, binary search trees, binary heaps, graphs.
Algorithms: Searching, sorting, hashing. Asymptotic worst case time and space
complexity. Algorithm design techniques: greedy, dynamic spanning trees, shortest
paths.

ANALYSIS OF GATE PAPERS

Data Structures Algorithms

Exam Year
1 Mark
Ques.

2 Mark
Ques. Total Exam Year

1 Mark
Ques.

2 Mark
Ques. Total

2003 5 7 19 2003 3 5 13
2004 7 10 27 2004 1 7 15
2005 5 6 17 2005 2 7 16

2006 1 7 15 2006 7 5 17
2007 2 7 16 2007 2 8 18

2008 3 7 17 2008 - 11 22
2009 1 4 9 2009 3 5 13

2010 1 5 11 2010 1 3 7
2011 1 3 7 2011 1 3 7
2012 1 4 9 2012 3 3 9
2013 - 3 6 2013 4 3 10

2014 Set-1 3 3 9 2014 Set-1 2 2 6

2014 Set-2 3 3 9 2014 Set-2 2 2 6
2014 Set-3 3 3 9 2014 Set-3 1 3 5
2015 Set-1 3 3 6 2015 Set-1 3 3 9

2015 Set-2 3 2 4 2015 Set-2 3 3 9
2015 Set-3 4 6 16 2015 Set-3 2 3 8

2016 Set-1 3 5 13 2016 Set-1 2 3 8
2016 Set-2 3 6 15 2016 Set-2 2 2 6

2017 Set-1 4 3 10 2017 Set-1 2 1 4
2017 Set-2 2 4 10 2017 Set-2 1 3 7

2018 4 3 10 2018 1 3 7

DATA STRUCTURES &

ALGORITHMS

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Topics Page No

1. INTRODUCTION TO DATA STRUCTURES

1.1 Introduction 01
1.2 Linked Lists 01

2. STACK AND QUEUE

2.1 Stack 06
2.2 Queues 09
2.3 Deque 12
2.4 Abstract Data Types 12
2.5 Performance Analysis 12
2.6 Asymptotic Notation (o, Ω, ϴ) 13

3. SORTING & SEARCHING

3.1 Sorting 15
3.2 Sorting, Algorithms 15
3.3 Searching 25

4. TREE

4.1 Binary Tree 29
4.2 Header Nodes: Threads 36
4.3 Binary Search Trees 38

5. HEAP & HEIGHT BALANCED TREE

5.1 Heap 42
5.2 Tree Searching 44
5.3 Optimum Search Trees 46
5.4 General Search Trees 49
5.5 Multiday Search Trees 49
5.6 B– Tree and B+ Tree 50
5.7 Digital Search Tree 52

6. INTRODUCTION TO GRAPH THEORY

6.1 Graph Theory Terminology 55
6.2 Direct Graph 57

CONTENTS

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

6.3 In Degrees and Out Degrees Of Vertices of a Diagram 58
6.4 Null Graph 58
6.5 Finite Graphs 58
6.6 Trivial Graphs 58
6.7 Sub Graphs 58
6.8 Sequential Representation of Graphs, Adjacency Matrix,

Path Matrix 58
6.9 Shortest Path Algorithm 60
6.10 Linked Representation of a Graph 60
6.11 Graph Traversal 62
6.12 Spanning Forests 62
6.13 Undirected Graphs and Their Traversals 63
6.14 Minimum Spanning Trees 67

7. DESIGN TECHNIQUES

7.1 A Greedy Algorithm 69

8. GATE QUESTIONS (DATA STRUCTURES) 75

9. GATE QUESTIONS (ALGORITHMS) 136

10. ASSIGNMENT QUESTIONS (DATA STRUCTURES) 184

11. ASSIGNMENT QUESTIONS (ALGORITHMS) 200

7.2 Divide and Conquer Algorithm 70

7.3 Dynamic Programming 71
7.4 Backtracking 72

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

1.1 INTRODUCTION

A computer is a machine that processes
information and data. The study of data
structures includes how this information
and data is related and how to use this data
efficiently for various applications.

Fig 1: Value and Operator Definition

 A logical property of a data type is
specified by abstract data type, or ADT.

 A data type definition consist of:
(i) Value definition i.e. values and
(ii)Operator definition i.e. set of
operations on these values.

 These values and the operations on
them form a mathematical construct
that can be implemented using
hardware or software data structures.
Note: ADT is not concerned with
implementation details.

 Any two values in an ADT are equal if
and only if the values of their
components are equal.

1.2 LINKED LISTS

 There are certain drawbacks of using
sequential storage to represent stacks
and queue.

i) A fixed amount of storage remains
allocated to the stack or queue even
when the structure is actually using
a smaller amount or possibly no
storage at all.

ii) Only fixed amount of storage may be
allocated, making overflow a
possibility.

 In a sequential representation, the
items of a stack or a queue are
implicitly ordered by the sequential
order of storage. If q[x] represents an
element of a queue, the next element
will be q [(x+1) % MAXQUEUE] i.e. if x
equals MAXQUEUE -1 then next element
is q [0].

 Suppose that the items of a stack or a
queue are explicitly ordered i. e. each
item contain the address of the next
item within itself. Such an explicit
ordering gives rise to a data structure
known as a Linear linked list as shown
in the figure 2.

Fig 2: Linked List

 Each item in the list is called a node and
it contains two fields.
i) Information field: It holds the actual

element on the list.
ii) The next address field: It contains

the address of the next node in the
list. Such an address, which is used
to access a particular node, is known
as a pointer.

 The entire linked list is accessed from
an external pointer (list) that points to
(contains the address of) the first node
in the list.

1 INTRODUCTION TO DATA STRUCTURES

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

 The next address field of the last node
in the linked list contains a special value
called as null. This is not a valid address
and used to signal the end of a list.

 The linked list with no nodes is called
the empty list or the null list. The value
of the external pointer, list, to such a
linked list is the null. The list can be
initialized to form the empty list by the
operation list = null.

1.2.1 INSERTING AND REMOVING NODES
FROM A LIST

1.2.1.1 Insertion

A list is a dynamic data structure, the
number of nodes on a list may vary as
elements are inserted and removed. The
dynamic nature of a list may be contrasted
with the static nature of an array, whose
size remains constant.

Fig 3: Adding an element to front of
linked list

For example:
Suppose that we are given a list of integers
as illustrated in fig 3(a) and we have to add
the integer 6 to the front of that linked list.

 Assume the existence of mechanism for
obtaining empty nodes as

P = getNode ();
The operation obtains an empty node
and sets the contents of a variable
named P to the address of that node.
The value of P is then a pointer to this
newly allocated node.

 fig 3(b), shows the list and the new
node after performing the get node
operation. The next step is to insert the
integer 6 into the info portion of the
newly allocated node. This is done by
info (P) = 6; (The result is shown in fig.
3(c))

 After setting the info portion of node
(P), it is necessary to set the next
portion of that node. Since node (P) is
to be inserted at the front of the list, the
node that follows should be the first
node of the current list. Since the
variable list contains the address of that
first node, node (P) can be added to the
list by performing the operation

next (P) = list;
[This operation places the value of list
(which is the address of first node fn the
list) into the next field of node(P)]

 At this point, P points to the list with the
additional item included. However,
since list is the external pointer to the
desired list, its value must be modified
to the address of the new first node of
the list. This can be done by performing
the operation –

list = P;

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Which changes the value of list to the
value of P. Fig 3(e) illustrates the result
of this operation.

 Generalized Algorithm
1. P=getNode (); //Allocate

memory for new node
2. Info (P) =x;
3. Next (P) =list;
4. List=P;

1.2.1.2 Deletion

The following figure 4 shows the process of
removing the first node of a nonempty list
and storing the value of its info into a
variable x. The initial step and final step is
as shown in fig 4(a) and 4(f) respectively-

Fig 4: Removing a node from the front of
the linked list

Note: The process is exactly opposite to the
process of adding a node
During the process of removing the first
node from the list, the variable p is used as
an auxiliary variable. The starting and
ending configuration of the list make no
reference to P. But once the value of p is
changed there is no way to access the node
at all, since neither an external pointer nor
a next field contains its address. Therefore
the node is currently useless and cannot be
reused. The get node creates a new node,
whereas free node destroys a node.

Linked List as a Data Structure
Linked Lists are not only used for
implementing stacks and queues but also
other data structures. An item is accessed
in a linked list by traversing the list from its
beginning. A list implementation requires n
operation to access the nth item in a group
but an array requires only single operation.
Inserting or deleting an element in the
middle of a group of other elements list is
superior in an array.
For example:

Fig 5: Insertion operation

We want to insert an element x between
the 3rd and 4th elements in an array of size
10 that currently contains seven items (X
[0] through X [6]).
Items 6 to 3 first are moved one slot and
the new element is inserted in the newly
available position 3 as shown in the fig 5.

 In this case insertion of one item
involves moving four items in addition

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

to the insertion itself. If the array
contained 500 or 1000 elements, a
correspondingly larger number of
elements would have to be moved.
Similarly to delete an element from an
array without any gap, all the elements
beyond the element deleted must be
moved one position.

 Suppose the items are stored as a list, if
p points to an element of the list,
inserting a new element involve
allocating a node, inserting the
information and adjusting two pointers.
The amount of work required is
independent of the size of the list as
shown in fig 6.

Fig 6: inserting a node

 An item can be inserted only after a
given node, because there is no way to
proceed from a given node to its
predecessor in a linear list without
traversing the list from its beginning i.e.
one can only go forward for accessing
the node of the list, not backward.

 For insertion of an item before desire
node, the next field of its predecessor
must be changed to point to a newly
allocated node.

 To delete a node from a linear list it is
insufficient for only one given pointer
to that node. Since the next field of the
node’s predecessor must be changed to
point to the node’s successor and there
is no directed way of reaching the
predecessor of a given node.

1.2.2 OTHER LIST STRUCTURES

1.2.2.1 Circular Lists

 Let p be a pointer to a node in a linear
list, but we cannot reach any of the
nodes that precede node (p). If a list is
traversed, the external pointer to the
list must be preserved to be able to
reference the list again.
Suppose that a small change is made to
the structure of a linear list, so that the
next field in the last node contains a
pointer back to the first node rather
than the null pointer. Such a list is
called a circular list

 Circular list is as shown in fig. 7(a),
from any pointy in such a list it is
possible to reach any other point in the
list. If we begin at a given node and
traverse the entire list, we end up at the
starting point.

Note: Circular list does not have a natural
“first” or “last” node. We must therefore,
establish a first and last node by
convention.

Fig 7: Circular linked list

One convention: Let the external pointer
to the circular list point to the last node,
and to allow the following node to be the
first node as shown in fig. 7 (b). If p is an
external pointer to a circular list, this
convention allows access to the last node ,
this convention allows access to the last
node of the list by referencing node(p) and

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

to the first node of the list by referencing
node (next(p)).
A circular list can be used to represent a
stack or queue.

1.2.2.2 Doubly Linked Lists

Although a circularly linked list has
advantages over a linear list but still it has
some drawbacks listed as follows:

 One cannot traverse such a list
backward, nor can a node be deleted
from a circularly linked list, given
only a pointer to that node. In case
where these facilities are required,
the suitable data structure is a
doubly linked list.

 In Doubly Linked Lists each node
contains two pointers: one to its
predecessor and another to its
successor.

 Doubly linked list may be either
linear or circular and may or may
not contain a header node.

 Nodes on a doubly linked list
consists of three fields
(i) An info field that contains the
value stored in the node.
(ii) Left and right field contains
pointers to the nodes on either side

 Dynamic implementation and array
implementation of each node is as
shown in fig. 8.

Fig 8: Array and dynamic implementation

Note: In the array implementation the
available list for such a set of nodes need
not be doubly linked, since it is not
traversed bidirectional. The available list
must be linked together by using either a
left or a right pointer.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

2.1 STACK

A stack is an ordered collection of items
into which new items may be inserted or
deleted only at one end, called the top of
the stack.

Fig 1: Stack containing elements

 A stack is different from an array as it
has the provision for the insertion and
deletions of items, thus a stack is a
dynamic, constantly changing object.

 The last element inserted into a stack is
the first element deleted. Thus stack is
called a last-in, First-out (or-LIFO) list.

Fig 2: Motion picture of stack

 One cannot distinguish between frame
(A) and frame (E) by looking at the
stack’s state at the two instances. No
record is kept on the stack of the fact
that items had been pushed and popped
in the meantime.

 The true picture of a stack is given by a
view from the top looking down, rather

than from a side looking in. Thus there
is no perceptible difference between
frame (E) and (D). One can compare the
stacks at the two frames by removing
all the elements on both stacks and
compare them individually.

2.1.1 OPERATIONS ON STACK

 When an item is added to a stack, it is
pushed onto the stack.

 When an item is removed, it is popped
from the stack.

 Given a stack s and an item i,
performing the operation push (s, i)
adds item i to the top of stack s.

 The operation i = pop(s); removes the
element at the top of s and assigns its
value to i.

 As push operation adds elements on to
a stack, so a stack is sometimes called a
pushdown list.

 There is no upper limit on the number
of items that may be kept in a stack;
though pop operation cannot be applied
to the empty stack as such a stack has
no elements to pop.

 The operation empty(s) determines
whether stacks are empty or not. If the
stack is empty, empty or not. If the stack
is empty, empty(s) returns the value
TRUE, or else it will return the value
FALSE.

 The operation stack top(s) returns the
top element of stack s. The stack top(s)
operations can be decomposed into a
pop and a push. This is also called as
peek operation.
i = stack top(s); is equivalent to

i = pop(s);
push (s, i);

2 STACK AND QUEUE

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

The result of an illegal attempt to pop
or access an item from an empty stack
is called underflow
Operation Function
Push(s, i) Adds item i on the top of

stack s.
Pop(s) Removes the top element of

the stacks
Empty(s) Determines whether or not

a stack
Stack
top(s)

Return the top element of
stacks without popping it

stack top is not defined for an empty stack.

2.1.2 INFIX, POSTFIX AND PREFIX

 If the operator is situated in between
the operands, then the representation is
called infix.

A + B  infix

 If the operator is preceding the
operands, then the representation is
called prefix.

+AB  prefix
 If the operator is following the

operands, then the representation is
called postfix.

AB+  postfix
 Examples of Polish / Prefix notation

1. (A + B) * C = (+ AB) * C = * + ABC
2. A + (B * C) = A + (*BC) = +A * BC
3. (A+B)/(C-D) = (+AB) / (-CD) = /+AB

– CD
 Examples of Reverse polish / postfix

Notation
1. A $ B * C- D + E / F/ (G + H) = AB $ C

* D – EF / GH +/+
2. ((A + B) *C-(D-E)) $ (F + G) = AB +C

* DE - - FG + $
3. A –B /(C * D $ E) = ABCDE $ * / -

 The computer evaluates an arithmetic
expression written in infix notation in
two steps, i.e. first it converts the
expression to postfix notation and then
it evaluates the postfix expression.

2.1.3 Evaluation of a Postfix Expression

Let P be an arithmetic expression written
in postfix notation. The following algorithm
evaluates P using a STACK to hold
operands.

Algorithm:
1. Add a right parenthesis”)” at the end of P.
2. Scan P from left to right and repeat

steps 3 and 4 for each elements of P
until the “)” is encountered.

3. If an operand is encountered, push it on
STACK.

4. If an operator is encountered, then
(a) Remove the two top elements of

STAC, where X is the top element
and Y is the next to top element.

(b) Evaluate Y operator X.
(c) Place the result of
(d) back on STACK.
[End of loop]

5. Set VALUE equal to the element on
STACK.

6. Exit.

Example of Above Concept:
Consider the following arithmetic
expression P written in postfix notation.
P: 4,5,2, +, *, 16, 4, /, - [, is for separation
it’s not an operator]
Below is the content of STACK as each
element of P is scanned.

Symbol Scanned STACK
4 4
5 4,5

2 4,5,2
+ 4,7
* 28

16 28,16
4 28,16,4

/ 28,4
- 24

)

The final number in STACK is 24, which is
assigned to VALUE when “)” is scanned and
thus is the final value of P.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

2.1.4 Infix to Postfix Conversion

Let Q be an arithmetic expression written
in infix notation, besides operands and
operators, Q also contain left and right
parentheses.
The following algorithm is used to
transform the infix expression Q to its
equivalent postfix expression P. It uses a
stack to temporarily hold operators and left
parentheses. The postfix expression P will
be constructed from left to right using the
operands from Q and the operators which
are removed from STACK. Push a left
parenthesis onto STACK and add a right
parenthesis at the end of Q. The algorithm
is completed when STACK is empty.
Algorithm:

1. Push “(“onto STACK, and add “)” to the
end of Q.

2. Scan Q from left to right and repeat
steps 3 to 6 for each elements of Q until
the STACK is empty.

3. If an operand is encountered, add it to
P.

4. If a left parenthesis is encountered push
it onto STACK

5. If an operator  is encountered, then:

(a) Repeatedly pop from STACK and
add to P, each operator (on the top
of STACK) which has the same
precedence or higher precedence
than .

(b) Add  to STACK
[End of if structure]

6. If a right parenthesis is encountered,
then:
(a) Repeatedly pop form STACK and

add to P each operator (on the top of
STACK) until a left parenthesis is
encountered.

(b) Remove the left parenthesis.
[Do not add the left parenthesis to
P]
[End of If structure]
[End of step 2 loop]

7. Exit

Example -
Consider the following arithmetic infix
expression Q:

Q: A + (B * C-(D/EF)*G)*H
Following is the process of conversion of
infix expressions into its equivalent
expression P.

Symbol
Scanned

STACK Expression P

A (A
+ (+ A
((+(A
B (+(AB

* (+(* AB
C (+(* ABC
- (+(- ABC*

((*(- ABC*
D (+(-(ABC*D
/ (+(-(/ ABC*D

E (+(-(/ ABC*DE
↑ (+(-(/↑ ABC*DE
F (+(-(/↑ ABC*DEF
) (+(- ABC*DEF↑/

* (+(-* ABC*DEF↑/
G (+(-* ABC*DEF↑/G
) (+ ABC*DEF↑/G*-

* (+* ABC*DEF↑/G*-
H (+* ABC*DEF↑/G*-H
) ABC*DEF↑/G*-H*+

After last step, the STACK is empty and
postfix equivalent of Q is

P: ABC * DEF /G* -H * +

2.1.5 LINKED IMPLEMENTATION OF
STACKS

The operation of adding an element to the
front of a linked list is similar to that of
pushing an element onto a stack. A new
item is addressed as the only immediately
accessible item in a collection –in both
cases.

Note: A stack can be accessed only
through its top element and a list can be
accessed only from the pointer to its first
element and the operation of removing the
first element from a linked list is similar to
popping a stack.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

A stack may be represented by a
Linear Linked List. The first node of the list
represents the top of the stack.

If an external pointer s points to
such a linked list, the operation push(s, x)
is implemented as:

1. P=getNode ();
2. Info (p) =x;
3. next (p)=s;
4. s=p;

Consider the following figure

Fig 3: Stack and queue as linked list

Fig. 3(a) shows a stack implemented as a
linked list fig. 3(b) shows the same stack
after another element has been pushed
onto it.

Advantages:

 All stacks being used by a program can
share the same available list and when a
stack needs a node, it can obtain it from
the single available list.

 When a stack no longer needs a node, it
returns the node to that same available
list.

 As long as the total amount of space
needed by all the stacks at any one time
is less than the amount of space initially
available to them, each stack is able to
grow and shrink to any size

 No space has been pre-allocated to any
single stack and no stack is using space
that it does not need.

2.2 QUEUE

A queue is an ordered collection of items
from which items may be deleted at one
end called the front of the queue and may
be inserted at the other end called the rear
or the queue.
The first element inserted into a queue into
a queue is the first element to be removed.
Thus queue is called a FIFO (first – In –
First – Out) list.

2.2.1 Operations on Queue

Operation Function
Insert Inserts item x at the rear of

the queue q
x=remove(q) Deletes the front elements

from the queue q and sets x to
its contents

Empty Returns false on true
depending on whether or not
the queue contains any
elements.

Fig. 4: Insertion of element in Queue

Example:

 As there is no limit to the number of
elements a queue may contain, so an
insert operation can always be
performed. There is no way to remove
an element from a queue containing no
elements, thus remove operation can be
applied only if the queue is non-empty.

 The result of an illegal attempt to
remove an element from empty queue
is called underflow

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

2.2.2 LINKED IMPLEMENTATION OF
QUEUES

 We know that, items are deleted from
the front of the queue and inserted at
the rear. Let a pointer to the first
element of a list represent the front of
the queue and another pointer to the
last element of the list represents the
rear of the queue as shown in Fig. 5
illustrate the same queue after a new
item has been inserted.

Fig 5: Queue after elements is inserted

 Under the list representation, a queue
of consists of a list and two pointers q
front and q rear. The operation empty
(q) and x = remove (q) are completely
similar to empty (s) and x = pop (s).
with the pointer q front replacing s.

 Also, important consideration is
required when the last element is
removed from a queue. In that case, q
rear must also be set to null, because in
an empty queue both q front and q rear
must be null.

 Insert (q, x) is same as adding an
element x after the last element of list.

Disadvantages of representing a stack or
queue by a linked list:

(i) A node in a linked list occupies more
storage than a corresponding element
in an array, since two pieces of

information is needed in the array
implementation.
[Note: The space used for a list node is
usually not twice the space used by an
array element, since the elements in
such a list usually consist of structures
with many subfields.]

(ii) Additional time is needed in managing
of available list. Addition and deletion
of each element from a stack or a queue
involves a corresponding deletion or
addition to the available list.

Advantages:

(i) All the stacks and queues of a program
have access to the same free list of
nodes.

(ii) Nodes not used by one stack may be
used by another, as long as the total
number of nodes in use at any one time
is not greater than the total number of
nodes available.

2.2.3 PRIORITY QUEUE

The result of its basic operation. The
priority queue is a data structure in which
the intrinsic ordering of the elements
determine Type of priority queue
 An ascending priority queue is a

collection of items into which items can
be inserted arbitrarily and form which
only the smallest item can be removed.

 A descending priority queue is
collection of items into which can be
inserted arbitrarily and it allows
deletion of only the largest item.

2.2.3.1 Priority queue has following
rules:

 An element of higher priority is
processed before any element of lower
priority.

 Two elements with the same priority
are processed according to the order in
which they were added to the queue.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

2.2.3.2 Prototype of Priority Queue:

 A prototype of a priority queue is a
timesharing system: a program of high
priority is processed first and programs
with the same priority form a standard
queue.

2.2.4 Representation of a Priority
Queue:

There are basically 2 different
representations of priority queue:
1. One way list representation of a

priority queue
2. Array Representation of a Priority

Queue
3. List implementation of Priority Queues

2.2.4.1 One way list representation

(a) Each node in the list will contain there
items of information: an information
field INFO, q priority numbers PRN and
a link number LINK.

(b) A node x precedes a node y in the list
(i) When x has higher priority than y or
(ii) When both have the same priority

but x was added to the list before y.
Thus the order in the one-way list
corresponds to the order of the priority
queue.

2.2.4.2 Array Representation

Another way to maintain a priority queue
in memory is to use a separate queue for
each level of priority (or for each priority
number). Each such queue will appear in its
own circular array and must have its own
pair of pointers. FRONT and REAR. In fact,
if each queue is allocated the same amount
of space, a two-dimensional array QUEUE
can be used instead of the linear arrays. A
indicates this representation for the
priority queue in b. Observe that FRONT[K]
and REAR[K] contain, respectively, the
front and rear elements of row K of QUEUE,

the row that maintains the queue of
elements with priority number K.

Fig 6: Array implementation of Priority
Queue

2.2.4.3 List implementation

 An ordered list can be used to represent
a priority queue. For an ascending
priority queue -
(i) Insertion is implemented by place

operation which keeps the list
ordered.

(ii) Deletion of the minimum element is
implemented by keeping the list in
descending rather than ascending
order. A priority queue
implemented as an ordered linked
list requires examining an average
of approximately n/2 nodes for
insertion but only one node for
deletion.

 An unordered list may also be used as a
priority queue. Such a list require
examining only one node for insertion
but always requires examining n
elements for deletion traverse the
entire list to find the minimum or
maximum and hen delete that node.

 Thus an ordered list is somewhat more
efficient than an unordered list in
implementing a priority queue.

 Advantages: List is somewhat more
efficient than an array in implementing
a priority queue.
(i) No shifting of elements i.e. gaps is

necessary in a list
(ii) An item can be inserted into a list

without moving any other items,
whereas this is impossible for an

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

array unless extra space is left
empty.

2.3 DEQUEUE

A de-queue is a linear list in which
elements can be added or removed at
either end but not in the middle.

Fig 7: Pointers in de-queue

 De-queue is maintained by a circular
array DEQUE with pointer LEFT and
RIGHT, point to the two ends of the de-
queue.

 The condition LEFT = NULL will be used
to indicate that a de-queue is empty.

 An input-restricted de-queue allows
insertion at only one end of the list but
allows deletion at both ends of the list.

 An output-restricted deque allows
deletion at only one end of the list but
allows insertion at both ends of the list.

2.4 Abstract Data Types

A useful tool for specifying the logical
properties of a data types is the abstract
data type, or ADT. Fundamentally, a data
type is a collection of values and a set of
operations on those values. That collection
and those operations from a mathematical
construct that may be implemented using a
particular hardware or software data
structure. The term “abstract data type”
refers to the basic mathematical concept
that defines the data type.

In defining an abstract data type as a
mathematical concept, we are not
concerned with space or time efficiency.
Those are implementation details. It may
not concern to implement a particular ADT

on a particular piece of hardware or using a
particular software system.

For example, we have already seen
that the ADT integer is not universally
implementable. Nevertheless, by specifying
the mathematical and logical properties of
a data type or structure, the ADT is useful
guideline to implementers and a useful tool
to programmers who wish to use the data
type correctly.

2.4.1 Queue as an abstract Data type

The representation of a queue as an
abstract data type is straight forward. We
use ectype to denote the type of the queue
element and parameterize the queue type
with ectype.
o Abstract typeset <<ectype>> QUEUE

(ectype):
o Abstract empty (q);
o QUEUE (ectype) q;
o Post condition empty = = (Len (q) = 0);
o Abstract ectype remove (q);
o QUEUE (ectype) q;
o Precondition empty (q) = = FALSE;
o Post condition remove = = first (q`);
o q = = sub (q`, 1, len(q`)-1);
o abstract insert (q, elt);
o QUEUE (ectype) q;
o ectype elt;
o Post condition q = = q` + <elt>;

2.5 PERFORMANCE ANALYSIS

The space complexity of an algorithm is the
amount of memory it needs to run to
completion. The time complexity of an
algorithm is the amount of computer time
it needs to run to completion. Time
Complexity: The time T(p) taken by a
program p is the sum of the compile time
and the run (or execution) time. The
compile time does not depend on the
instance characteristics. The runtime is
denoted by TP (instance characteristics).

To obtain such time at instance, we
need to know that how many computations
i. e. additions, multiplication, subtraction,

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

divisions performed by an algorithm. But
still obtaining correct formula for each
algorithm is impossible task, since the time
needed for an addition, subtraction,
multiplication and so on, often depends on
the numbers being added, subtracted, and
multiplied and so on. The value of Tp (n)
for any given n can be obtained only
experimentally. The program is typed,
complied and run on a particular machine.
The execution time is physically clocked
and Tp(n) is obtained.

We can determine the number of
steps needed by a program to solve a
particular problem instance in one of two
ways-

(i) In the first method, we introduce a
new variable count into the
program. This is a global variable
with initial value 0. Statements to
increment count by the appropriate
amount are introduced into the
program. This is done so that each
time a statement in the original
program is executed; count is
incremented by the step count of
that statement.

(ii) The second method to determine
the step count of an algorithm is to
build a table in which we list the
total number of steps contributed by
each statement. This number is
often arrived at, by first determining
the number of steps per execution
(s/e) of the statement and the total
number of times (i. e. frequency)
each statement is executed. The s/e
of a statement is the amount by
which the count changes as result of
the execution of that statement. By
combining these two quantities the
total contribution of each statement
is obtained. By adding the
contributions of all statements, the
step count for entire algorithm is
obtained.

2.6 ASYMPTOTIC NOTATION (O, Ω, )
(1) Big oh (O)
The function f(n) = O(g(n)) (read as f of n is
big oh of g of n) iff exists positive constants
c and n0, such that f(n) ≤ c* g(n) for all c, n
n0.

For Example

1. The function 3n + 2 = O (n) as 3n + 2
4n for all n2.

2. The function 3n + 3 = O (n) as 3n + 3 
4n for all n 3 .

3. The function 3n + 2O (1) as 3n + 2 is
not less than or equal to c for any

constant c and all n .0n

 We write O (1) to mean a computing
time that is a constant, Similarly -
 O(n) is called linear
 O(n2) is called quadratic
 O(n3) is called cubic
 O(2n) is called exponential

 If an algorithm takes time O(log n), it is
faster, for sufficiently large n, than if it
had taken O(n). Similarly O(n log n) is
better than O(n2) but not as good as
O(n).

 From the definition of O(Big-oh), it
should be clear that f(n) = O(g(n) is not
the same as O(g(n)) = f(n).

 If f(n) = am nm +……+a1n + a0, then
f(n) = O(nm)
Proof:

F(n) i
m

0i

i na


 



m

0i

mi

i

m nan

1nforan
m

0i

i

m 


so f(n) = O (nm)

2.6.1 Omega (Ω)

The function f(n) = Ω(g(n)) (read as f of n is
omega of g of n) if there exist positive

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

constant C and n0 such that f(n)

.0nn,nallfor)n(g*C 

For example:
1. The function 3n + 2 =

Ω(n)as3n+2 3nfor n 1theinequality

holdsfor n 0,but thedefinitionof Ω

 



requires an n0 > 1.
2. The function 3n + 3

.1nforn3)3n3(as)n(

3. The function 3n + 3 = Ω (1)

 As in the case of big-oh notation, there
are several functions g(n) for which f(n)
= Ω (g(n)). The function g(n) is only a
lower sound on f(n).

 For the statement f(n) = Ω(g(n)) to be
informative g(n) should be as large as
possible function of n for which the
statement f(n) = Ω(g(n)) is true.

 So, when we say that 3n + 3 = Ω(n)

)2(n26 n2n  we almost never say

that 3n + 3 = Ω(1) or n 26 2 n (1)  

even though both of these statements
are correct.

 if f(n) = amnm+………+a1n + a0 and am> 0
then f(n) = Ω(nm).

2.6.2 Theta ()

The function f(n) = (g(n)) (read as f of n is
theta of g of n) iff there exist positive
constantC1, C2,andho such that C1g(n)

2 0.`f (n) C g(n)for alln,n n  

For example

1. The function 3n + 2 = (n) as 3n +2

1 2 0

3nforalln 2&3n+2 4nforalln n,

soC =3,C =4andn =2

   

2. The function 3n + 3 = (n)

 The theta notation is more precise both
the big-oh and omega notations. The

function f(n) = (g(n)) if g(n) is both on
upper and lower bound on f(n).

 If f(n) = amnm+……..+ a1n + a0 and am> 0
then f(n) = (nm)

2.6.3 Little “Oh” (o)

The function f(n) = o(g(n)) (read as f of n is

little oh of g of n) iff 0
)n(g

)n(f
lim
n




For example:

1. The function 3n + 2 = o(n2) since

0
n

2n3
lim

2n






2. The function)3(on26 n2n 

2.6.4 Little “omega” (ω)

The function f(n) = ω(g(n)) (read as f of n is

little omega of g of n) iff 0
)n(f

)n(g
lim
n




© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

3.1 SORTING

Sorting refers to the operation of arranging
data in some given order, such as
increasing or decreasing with numerical
data or alphabetically with character data.
A file of size b is a sequence of n items r[0],
r[1],…….[n – 1]. Each item in the file is
called a record.

A sort is internal if the records that
it’s sorting are in main memory or external
if some of the records that it’s sorting are in
auxiliary storage.

A sorting technique is called stable if
for all records i and j such that k[i] equals
k[j], if r[i] precedes r[i] in the original file,
r[i] precedes r[j] in the sorted file.

Efficiency Consideration:

There most important things that
determine the efficiency of sorting are:
1. Amount of time that must be spent by

the programmer in coding a particular
sorting program.

2. The amount of machine time necessary
for running the program.

3. The amount of space necessary for the
program.

3.2 SORTING ALGORITHMS

3.2.1 BUBBLE SORT

In bubble sort, pass goes through the file
sequentially, several times. Each pass
consists of comparing each element in the
file with its successor (x[i] with x[i + 1])
and interchanging the two elements if they
are not in proper order.

Algorithm
Given Array ̀ a` of `n` integers [0……..n-1]
Aim : To sort `a` in ascending order.

Working:

Bubble sort uses two counter i and j such
that i begins with (n -2) and decrements till
to 0. For every value of i, j begins with 0
and goes upto i.

Example:

If n = 5, then i ranges from (n-2) down to 0
i.e. 3 down to 0 and for each value of i, j
varies from 0 to i.

For (i=n-2; i>=0; i--)

For (j=0; j<=i; j++)

For each value of j we check whether (a[j] >
a [j + 1]) and if true, exchange a[j] with a [j
+ 1]

Hence
for(i= n -2; i>=0;i--)

for (j = 0; j <= i; j++)
if(a[j] > a[j + 1])
{

t = a[j];
a[j] = a[j + 1];
a[j + 1] = t;

}

Let us show working with diagram.
Let ‘a’ be array of 5 elements i. e. n = 5.

Fig 1: Array during pass I

3 SORTING & SEARCHING

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Fig 2: Array after pass I

Fig 3: Array after pass II

Fig 4: Array after pass III

Fig 5: Array after pass IV

Note: Bubble sort requires (n – 1) passes to
sort array of ̀ n` elements.

Example:
Consider the following file
25, 57, 48, 37, 12, 92, 86, 33

1. First pass:

X[0] with
x[1]

(25 with 57) No interchange

X[1] with
x[2]

(25 with 57) Interchange

X[2] with
x[3]

(25 with 57) Interchange

X[3] with
x[4]

(25 with 57) Interchange

X[4] with
x[5]

(25 with 57) No interchange

X[5] with
x[6]

(25 with 57) Interchange

X[6] with
x[1]

(25 with 57) Interchange

 After the first pass, the file is in the order
25, 48, 37, 12, 57, 86, 33, 92
2. After second pass:

25, 12, 37, 48, 57, 33, 86, 92
3. After Third pass:

25, 12, 37, 48, 33, 57, 86, 92
4. After Fourth pass:

12, 25, 37, 33, 48, 57, 86, 92
5. After Fifth pass:

12, 25, 33, 37, 48, 57, 86, 92
6. After Sixth pass:

12, 25, 33, 37, 48, 57, 86, 92
7. After Seventh pass:

12, 25, 33, 37, 48, 57, 86, 92

 After the nth pass, the nth largest element
is in its proper position within the
array.

 The sorting method is called bubble
sort because each number slowly
“bubbles” up to its proper position.

 As each iteration places a new elements
into its proper position, a file of n
elements requires not more than (n – 1)
iterations.

 As all the elements in positions greater
than or equal to (n – i) are already in
proper position after the ith iteration,
they need not be considered in
succeeding iterations. If the file can be
sorted in fewer than (n -1) passes, the
final pass makes no interchanges.

3.2.1.2 Comparisons

On the first pass (n – 1) comparisons are
made, on the second pass (n – 2)
comparisons and on the (n -1)th pass only
one comparison is made. Thus there are (n

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

– 1) passes and (n – 1) comparisons on
each pass.
Total number of comparison=(n–1)*(n -1)
= n2 – 2n + 1
= O (n2)

Note: It is the number of interchanges
rather than the number of comparisons
that takes up most time in the program`s
execution.
Now as all the elements in positions greater
than or equal to (n– i) are already in proper
position after iteration i, so they need not
be considered in succeeding iterations.
Thus number of comparisons on iteration i
is (n – i). If there are k iterations, the total
number of comparisons is -
=(𝑛– 1) + (𝑛 − 2) + (𝑛 − 3) + ⋯ + (𝑛 – 𝑘)
= 𝑘𝑛 − [1 + 2 + 3 + 4 … … … … … … … . 𝑘)]
= 𝑘𝑛 − [𝑘(𝑘 + 1)/2]

=
2𝑛𝑘−𝑘2−𝑘

2
Thus bubble sort can be speed up by
considering (n – 1) comparisons on the
first pass, (n– 2) comparisons on the
second pass and only one comparison on (n
– 1)th pass.

3.2.2 QUICK SORT

Quick sort works on Divide and Conquer
policy. It is also called partition Exchange
Sort.

Divide:
The array X[P…r] is partitioned into two
non-empty sub arrays X[p…q] and X[(q+1)
…. r]. The index q is computed as part of
this partitioning procedure.

Conquer:
The two sub arrays X[p….q] and X[(q +
1)….r] are sorted by recursive calls to quick
sort

Example:
Consider the following unsorted array
34, 42, 67, 82, 90, 17, 12

Quicksort (pivot, i, j)
1. Increment the value of i till Pivot > a[i]
2. Decrement the value of j till Pivot a[j]
3. If i and j are not crossing each other,

then interchange the values of i and j.
4. If i and j are crossing each other, then

interchange the value of j with pivot.
5. Interchange of j with pivot, divide the

array into two unsorted array, one at
the left of pivot and one at the right of
pivot.

6. Apply the same rule on left and right
arrays to sort them and then merge the
two to get final sorted array.

7. Example -
(a) 34, 12, 67, 82, 90, 17, 42
(b) 34, 12, 17, 82, 90, 67, 42
(c) 17, 12, 34, 82, 90, 67, 42
Apply Quicksort (pivot, i, j) on Right
sub-array 82, 90, 67, 42
(d) 82, 42, 67, 90
(e) 67, 42, 82, 90
(f) 42, 67, 82, 90
Apply Quicksort (pivot, i, j) on Left sub-
array 12, 17
Merge left and right sorted sub-arrays

12, 17, 34, 42, 67, 82, 90
Note: It is not necessary to choose the first
elements as pivot, one can choose any item
as Pivot.

3.2.2.1 EFFICIENCY

Assume array size is n as a power of 2 i. e. n
= 2m, so that m = log2 n. Also assume
proper position for the pivot always is the
middle of the sub array.
Thus there will be n (actually n – 1)
comparisons on the first pass, after which
the file is split into two sub array each of
size n/2. For each of these two arrays,
there are n/2 comparisons approximately
and thus a total of 2(n/2) comparisons. So
after halving the sub array m times, there
are n arrays of size 1.
Thus the total number of comparisons for
the entire sort is approximately:
= n + 2*(n/2) + 4*(n/4) + 8*(n/8) + ……. +
n* (n/n)

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

= n + n + n+………+n (m times)
 Thus total number of comparisons is O(n *
m) or O(n log n).

3.2.3 SELECTION SORT

In selections sort successive elements are
selected in order and placed into their
proper sorted position. Selection sort
consists of a selection phase in which the
largest of the remaining element is
repeatedly placed in its proper position, i. e.
at the end of the array. This largest
elements is interchanged with the element
at the end of the array.

Thus the initial n element priority
queue is reduced by one element after each
selection. Thus after (n – 1) selections the
entire array would be sorted as selection
process needs to be done only from (n – 1)
down to 1 rather than down to 0.
This method also requires (n – 1) passes
for sorting array of n elements. For
Example, to sort array of 5 elements,
selection sort needs 4 passes. In pass
number `i`, selection sort finds minimum
elements between a[i] and a[n–1] (i. e. from
position i to n–1) and then interchange the
minimum element with a[i].

Let us show working of selection
sort using diagrams. Let `a` be array of 5
integers
Pass 0: Check minimum element between
 a[0] to a[4], which is a[4] = -1
Interchange this minimum with a[0]
 The array after pass 0 is

Pass 1: Check minimum elements between
a[1] to a[n-1] which is a[2]=0 and
interchange this with a[1]. The array after
pass 1 is-

Similarly all passes can be shown as
follows-

3.2.4 BINARY TREE SORT

Binary tree sort uses a binary search tree. It
involves scanning each element of the input
file and placing it into its proper position in
a binary tree. To find that proper position
of an element `a`, a left or a right branch is
taken at each node, depending on whether
a is less than the element in the node or
greater than or equal to it.

As soon as the input elements are in
their proper position in the tree, the sorted
array can be retrieved by an in order
traversal of the tree. This has two phases.
First phase is creating a binary search tree
using the given array elements. Second
phase is to traverse the created binary
search tree in order thus resulting in a
sorted array.

3.2.4.1 Performance of the algorithm:

The average number of comparisons for
this method is O(n log2 n). but in the worst
case, the number comparisons requires is
O(n2), a case which arises when the sort
tree is severely unbalanced.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

e. g., Original data: 4, 8, 12, 17, 26.
In this case the insertion of the first node
requires no comparisons, the second node
requires two comparisons, and soon. Thus
the total number of comparisons is

2 + 3 +….+ n = 1
2

)1n(*n



 =O(n2)

Example:
Consider the following unsorted array
(i) Construct a binary tree

(a)Elements on left of node are smaller
(b)Elements on the right of node are
greater

(ii) Perform in order transversal of the tree
to get sorted array.

(iii)

3.2.4.2 Comparison

If original array is completely sorted (or
sorted in reverse order), then insertion of
the first node requires no comparisons, the
second requires two comparisons, the third
node requires three comparisons and so
on. Thus the total number of comparison is

2 + 3 +…..+ n=
n*(n 1)

1
2


 = O(n2)

3.2.5 HEAP SORT

Binary heap data structure is an array
those object that can be viewed as a
complete binary tree.

A heap is binary tree satisfying the
property: Every node has a greater value
than its child node. For a given unsorted
array, when a heap is formed, the element
at the root node is the largest element and
it is removed from the heap and placed at
the end of the array. The element at the end
of array which has been replaced by root
node is placed at the root node and again
with shuffling a new heap is formed and the
same process is repeated. At the end we are
left with only one element in the heap and
complete sorted array.

The drawbacks of the binary tree
sort are remedied by the heap sort, an in
place sort that requires only O(n log n)
operations regardless of the order of the
input.

3.2.5.1 Heap (or descending heap):

A heap (descending heap) of size n can be
defined as an almost complete binary tree
of n nodes such that the contents of each
node is less than or equal to the content of
its father. If the sequential representation
of an almost complete binary tree is used,
this condition reduces to the inequality.
A[j] A[jdiv2]for1 (jdiv2), j n.  

It is clear from this definition of a
descending heap that the root of the tree
(or the first element of the array) contains
the largest element in the heap. We now
formulate an algorithm which will have as
input an unsorted array and produce as
output a heap

3.2.5.2 Algorithm for creating a heap

1. Repeat through step 7 while there is
another element to be placed in the
heap.

2. Obtain child to be placed at leaf level.
3. Obtain position of parent for this child.
4. Repeat though step 6 while the child

has a parent and the value of the child is
greater than that of its parent.

5. Move the parent down to position of
child.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

6. Obtain position of new parent for the
child.

7. Copy child element into its proper
position.

3.2.5.3 General algorithm for the heap
sort
1. Create the initial heap.
2. Repeat through step 8 for n - 1 times.
3. Exchange the first element with the last

unsorted element.
4. Obtain the index of the largest son of

the new element.
5. Repeat through step 8 for the unsorted

element in the heap and while the
current element is greater than the first
element.

6. Interchange the elements and obtain
the next left son.

7. Obtain the index of the next left son.
8. Copy of the element into its proper

place.

Consider the timing analysis of the heap
sort. Since we are using a complete binary
tree, the worst case analysis is easier than
the average case. Note that depth of a
complete binary tree of n nodes is log2n.
Recall that to sort a given array we must
first create a heap and then sort that heap.
The worst case at each step involves
performing a number of comparisons
which is given by the depth of the tree. This
observation implies that the number of
comparisons is O(n log2 n). Average case
behaviour is also O(n log2 n). Also no extra
working storage area, except for one
element position, is required. That is why it
is known as an in place sorting technique.

Example:
Consider following unsorted array

First construct heap tree as:

Sorting being as:

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

3.2.6 INSERTION SORT

Insertion sort places the largest key in its
proper position. This is done by looking at
all the elements in the list and pushing the
largest key down the list, till its position is
found.

An insertion sort is one that sorts a
set of records by inserting records into an
existing sorted file. This requires (n – 1)
passes to sort an array of n elements. It
starts with an assumption that the array is
divided into sorted partition of length 1
and unsorted partition of length (n -1)

Example:
Consider the following unsorted array 50-
182
For the above 5 integers, sorted and
unsorted partitions can be shown as

In each pass, insertion sort picks next
element of unsorted partition and inserts i
in right place in sorted part. During this
process greater elements are pushed down
to make a place for element getting
inserted.

Thus we pick a[1] and insert it in the
right place in the sorted part. During this
process a[0] is pushed down to a[1].

3.2.6.1 Disadvantage:

Even after most items have been sorted
property into the first part of the list, the
insertion of a later item may require that
many of them to the moved.

3.2.6.2 Comparison:

Worst case:
If the input array is in reverse order, the
number of comparisons required to push
down the heavies element is 2 time when i

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

is 2, 3 times when i is 3. Precisely test
repeats i times (i range from 2 to n.)

N
2

i=2

N(N + 1)
i = 2 + 3 + + N = - 1= O(n)

2


In the best case (i. e. if input is already
sorted) the running time is O(n) because
the test to push down heavier element
always fails.

3.2.7 SHELL SORT

Shell sort works on comparative basis. It
works very much the way bubble sort
works except that it does compare
alternate elements, rather it makes
comparison with the elements at fixed
distance.

Shell sort is also known as
diminishing increment sort and is a
modification of the insertion sort. The
algorithm starts with comparing the
elements at distance `d` and swap them if
needed. The process is repeated by
reducing the distance d.

If there are unsorted elements, then
we will have initial distance d = 8 / 2 = 4. So
do the inter change.
For the next pass,
D=previous d/2 = 4 /2 = 2
Thus now we need to compare (0, 2) (1, 3),
(4, 6) and (5,7). The process is repeated till
d is greater than one.

Example:
Consider the following unsorted array:

Array has 8 elements, so d = 8/2 = 4.

×[0] is compared with × [4] 22 with 11 Interchange

×[1] is compared with × [5] 55 with 99 No
Interchange

×[2] is compared with × [6] 44 with 88 No
Interchange

×[3] is compared with × [7] 66 with 33 Interchange

For the second pass, d=previous d/2=4/2= 2

×[0] is compared with ×
[2]

11 with 44 No
Interchange

×[1] is compared with ×
[3]

55 with 33 Interchange
so× 1 [1]=33,
×[3]= 55

×[2] is compared with ×
[4]

44 with 22 Interchange
so× 1 [1]=33,
×[3]= 55

×[3] is compared with ×
[5]

55 with 99 No
Interchange

×[4] is compared with ×
[6]

44 with 88 No
Interchange

×[5] is compared with ×
[7]

99 with 66 Interchange
so× 1 [5]=66,
×[7]= 99

Thus second pass would give

11 33 22 55 44 66 88 99

For the third pass d = a. So adjacent
elements will be compared, thus it would
give.

11 33 22 55 44 66 88 99

3.2.8 ADDRESS CALCULATION SORT

In address calculation sort, a function f is
applied to each key. Function result
determines, into which of several sub files
the record is to be placed. The property of
function should be such that if x  y, then

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

f(x)  f(y). This function is called order
preserving

All of the records in one sub file will
have keys that are less than or equal to the
key of the records in another sub file. Any
of the sorting method (Simple insertion is
used) can be used to place into a sub file in
correct sequence. When all the items into a
sub file in correct sequence. When all the
items of original file have been placed into
sub files, the sub files are concatenated to
produce the sorted result.

Example:
Consider the following unsorted file 25, 57,
37, 12, 92, 33

We will create ten sub files, one for
each of the ten possible first digits. Initially
each of the sub files is empty. An array of
pointers f[10] is declared, where f[i] points
to the first element in the file whose first
digit is i. The first element (25) is placed
into the file head by f [2]. Each of the sub
files is maintained as a sorted linked list of
the original array elements.
Thus the sub file would appear as:

3.2.9 MERGE SORT

Merge sort works on the principle of divide
and conquer technique. It divides the list
into two sub lists of almost equal sizes.
Continue dividing the list till sub list

reduces to unit length and then merge the
sub lists which will be in sorted order.

The idea of merge sort comes the
case of merging two sub arrays which are
already sorted in increasing order. For e.g.

The array A can be considered as two sub
arrays ranging from f to s – 1 and s to t.
Both these sub arrays are already sorted.
These two sub arrays can be merge into a
single array say `C` such that C contains all
the element of array A in increasing order.
We may extend the idea of two sub arrays
to `n` sub arrays such that each sub arrays
is sorted in increasing order. For example,
consider an array of size n = 50. which can
be divided into 2 sub arrays of 25 elements
each. These 2 sub arrays can again be
divided in four sub arrays of 12 and 13
elements each. This division can go as till
each sub arrays has only one element. That
is for original array having n elements, n
sub arrays can be formed (each sub array
has exactly one element) and then these
arrays can be merged using simple merge
technique.
As an example consider the array
(10, 9, 8,7 6, 5, 4, 3, 2, 1)
Step 1: 10, 9, 8, 7, 6, 5, 4, 3, 2, 1
Mid point is at position 5, so that left and
right sub arrays consist 5 elements
(position 1 to 5) and right sub array
consists 5 elements.
Step 2: Left sub array is divided into 2
equal parts.
10, 9, 8, 7, 6, 5, 4, 3, 2, 1

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

At this point when division of sub arrays is
not possible, a simple merge procedure is
called for (10, 9, 8) to sort it as (8, 9, 10).
This process goes on till all sub arrays have
been sorted.
Example:
Consider following unsorted array:
40, 60, 70, 50, 20, 10, 30
Break the list into two sub array
First sub array: 40 60 70 50
Second sub array: 20 10 30
Again subdivide first sub list: 40, 60 and
70,50

Divide the second sub list:

Merge the two sub list

3.2.9.1 Comparison:

For any array of size n (where n is power of
2 i. e. n = 2m or m = log2 n) merge sort
divides the array in two halves (of size n/2
each) and then the two sub arrays of size
n/2 are merged. The two sub arrays of size
n/2 are again divided in four equal size
arrays of n/4 elements and then merged.
This process would go on till n sub arrays
of size one each are created. Thus the time
can be calculated as
= n +2 (n/2) + 4 (n/4) +…..+ n (n/n)

= n + n +…..+ n (m terms)
= m = n log2 n
Therefore merge sort has running time of
O(n log2 n)

3.2.10 RADIX SORT

Radix sort is based on the value of the
actual digits in the positional
representation of the number being sorted.

Larger integer can be determined as
follows: Start at the most significant digit
and advance through the least significant
digits as long as the corresponding digits in
the two numbers match. In this sort, we
take each number in the order in which
they appear in the file and place it into one
of ten queues, depending on the value of
the digit currently being processed. After
this restore each queue to the original file
starting with the queues of numbers with a
9 digit. When the actions have been
performed for each digit, starting with the
least significant and ending with the most
significant, the file is sorted

Example:
Consider the following unsorted array
25, 57, 37, 12, 92, 86, 33
Queues based on least significant digit
Queue [0]
Queue [1]
Queue [2] 12, 93
Queue [3] 33
Queue [4]
Queue [5] 25
Queue [6] 86
Queue [7] 57, 37
Queue [8] 48
Queue [9]

After first pass:
12, 92, 33, 25, 86, 57, 37, 48
Queues based on most significant digit
Queue [0]
Queue [1] 12
Queue [2] 25
Queue [3] 33, 37
Queue [4] 48

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Queue [5] 57
Queue [6]
Queue [7]
Queue [8] 86
Queue [9] 92

Thus sorted file is:
12, 25, 33, 37, 48, 57, 86, 92

3.3 SEARCHING

A table or a file is a group of elements, each
of which is called a record. For each record
there is a key associated, which is used to
differentiate among different records. The
association between a record and its key
may be simple or complex. In simple way,
the key is contained within the record at a
specific offset from the start of the record.
Such a key is called an internal key or an
embedded key whereas a separate table of
keys that includes pointer to the records,
such keys is called as external keys. For
every file there is at least one set of keys
that is unique, such a key is called a
primary key.

A search algorithm is an algorithm
that accepts an argument b and tries to find
record a pointer to that b. The algorithm
may return the entire record or more
commonly it may return a pointer to that
record. It is possible that the search for a
particular argument in a table is
unsuccessful; i.e. there is no record or a null
pointer. If a search is unsuccessful it may
be desirable to add a new record with the
argument as its key.

The algorithm that does the above
task is called a searching and insertion
algorithm. A successful search is called a
retrieval. A table of records in which a key
is used for retrieved is often called a search
table or a dictionary.

BASIC SEARCHING TECHNIQUES

3.3.1 Sequential searching

The simplest technique for searching an
unordered table for a particular record is to
scan each entry in the table in a sequential

manner until the desired record is found.
An algorithm for such a search procedure is
as follows.

Function LINEAR SERCH(K, N, X). Given
an unordered vector K consisting of N +
1(N 1) elements, this algorithm searches
the vector for a particular element having
the value X. Vector elements K[N + 1]
serves as a sentinel element and receives
the value of X prior to the search. The
function returns the index of the vector
element if the search is successful and
returns 0 otherwise.

1. [Initialize search]

X]1N[K

1I





2. [Search the vector]
Repeat the vector [1] X

3. [Successful search?]
If I = N + 1
Then Write (`UNSUCCESSFUL SEARCH`)
Return (O)
Else Write (`SUCCESSFUL SEARCH`)
Return (I)

The first step of the algorithm initializes
the key value of the sentinel record to x. In
the second step, a sequential search is then
performed on the n + 1 records. If the index
of the record found denotes record Rn+1
then the search has failed; otherwise, the
search is successful and I contains the
index of the desired record.

Recall that the performance of a
search method can be measured by
counting the number of key comparisons
taken to find a particular record. There are
two cases which are important, namely, the
average case and the worst case. The worst
case for the previous algorithm consists of
n + 1 key comparisons, while the average
case takes (n + 1)/2 key comparisons. The
average and worst search times for this
method are both proportional to n, that is,
of O(n). These estimates are based on the
probability of a request for a particular
record is the same as for any other record.
Let Pi be the probability for the request of

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

record R1 for 1 .ni  The average length
of search (ALOS) for n records is given by

E[ALOS] = 1 *P1 + 2*P2……+ n * Pn
Where P1 + P2 + ……+ Pn = 1.

Now suppose that the probabilities
for request for particular records are not
equally likely, that is, P1 .nin/1  the

question which naturally arises is: Can we
rearrange the table so as to reduce the
ALOS? The answer is yes and the desired
arrangement can be obtained by looking at
the previous equation for the expected
ALOS. This quantity will be minimized if the
records are ordered such that

P1)1.......(.P.........P n2 

For example, letting n = 5 and P1 = 1/5 for 1
5i  yields

E[ALOS]=1* 1/5+2 * 1/5+3 *1/5+4 *1/5 =3

Now, assuming that P1=0.4, P2=0.3, P3 = 0.2,
P4 = 0/07 and P5 = 0.03, the average length
of search in this case is

E[ALOS]=1*0.4+2*0.3+3*0.2+4*0.07+5*
0.03 = 2.03

This number is substantially less
than 3. The rearrangement of the initial t
according to Eq. (1) is called preloading.

If the table is subjected to many
deletions, then it should be represented as
a linked list. The traversal of a linked table
is almost as fast as the traversal of its
sequential counterpart. Note that
insertions can be performed very
efficiently when the table is sequentially
represented, assuming that the table is not
ordered.

3.3.2 Indexed sequential search

The indexed sequential search improves
search efficiency for a sorted file, but it
involves an increase in the amount of space
required.

An auxiliary table called an index is
set aside in addition to the sorted file itself.

Fig 1: Indexed Sequential file

 Each element in the index consists of a
key k index and a pointer the record in
the file that corresponds to k index. The
elements in the index, as well as the
elements in the file, must be sorted on
the key. If the index is 1/8th the size of
the file, every 1/8th record of the file is
represented in the index as shown in
the figure.

 The algorithm used for searching an
indexed sequential file is simple. Let
index be an array of the keys in the
index and let p index be the array of
pointers within the index to the actual
records in the file.
Note: We assume that the file is stored

as an array, that n is the size of the file
and that index size is the size of the
index.
For (i=0;i< index size && k index (i)<=
key ;i++)
Lowly = (i= = 0)? 0 : p index (i) – 1;
for(j=lowly;<=helm && k(j) !=key !=key;
j++);
return ((j > hilim)? – 1 : j);
In the case of multiple records with the

same key this algorithm does not
necessarily return a pointer to the first
such record in the table.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

 Advantage:

Fig 2: use of secondary index

The items in the table can be examined

sequentially if all the records in the file must be

accessed, yet the search time for a particular

item is sharply reduced.

 A sequential search is performed on the
smaller index rather than on the larger
table. Once the correct position has
been found, a second sequential search
is performed on a small portion of the
record table itself.

 The index can be use in both cases i. e.
sorted table is stored as a linked list as
well as array.
If the table is so large that even the use
of an index does not achieve sufficient
efficiency. In this case secondary index
can be used and it acts as an index to
the primary index which points to
entries in the sequential table as shown
in figure shown above.

 Deletion from an indexed sequential
table can be made easily by flagging
deleted entries. In sequential searching

through the table, deleted entries are
ignored.

Insertion into an indexed sequential
table is more difficult, since there may
not be space between tow already
existing table entries. Therefore it is
necessary to shift in a large number of
table elements. But it a herby item has
been flagged as deleted in the table only
a few items need to be shifted and the
deleted item can be overwritten. This
may require alternation of the index if
an item pointed to be an index element
is shifted.

3.3.3 BINARY SEARCH

Binary searching is the most efficient
method of searching a sequential table
without the use of auxiliary indices or
tables. Basically, the argument is compared
with the key of the middle element of the
table. If they are equal the search ends
successfully otherwise either the upper or
lower half of the table must be searched in
a similar manner.

 Algorithm:
1. Low = 0;
2. Hi = n – 1;
3. While (low < = hi) {
4. mid = (low + hi) /2;
5. if (key = = k(mid);
6. return (mid))
7. if (key < k(mid))
8. hi = mid – 1;
9. Else
10. low = mid + 1;
11. } /* end while */
12. return (-1);

 Each comparison in the binary search
reduces the number of possible
candidates by a factor of 2. Thus, the
maximum number of key comparisons
is approximately log2

We may say that the binary search
algorithm is O(log n)

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

 The binary search may be used in
conjunction with the indexed sequential
table organization. In that, instead of
searching the index sequentially, a
binary search can be used. The binary
search can also be used in searching the
main table once tow boundary records
are identified. But, the size of this table
segment is likely to be small enough so
that a binary search is not more
advantageous than a sequential search.
The binary search algorithm can only be
used if the table is stored as an array.

Binary search in the presence of
insertions and deletions with maximum
number of elements

 A data structure known as `padded List`
is used for utilizing binary search in the
presence of insertions and deletions if
the maximum number of elements are
available.

 This method uses two arrays:
i) An elements array
ii) Parallel flag array
iii) The element array contains the

sorted keys in the table with `empty`
slots initially evenly interspersed
among the key of the table to allow
for growth.

iv) An empty slot is indicated by a 0
value in the corresponding flag
array element, whereas a full slot is
indicated by the value 1. Each empty
slot in the element array contains a
key value greater than or equal to
the key value in the previous full
slot and less than the key value in
the following full slot. Thus the
entire element, perform a binary
search on the array. If they
performed on it. To search for an
element does not exist in the table. If
it is found and the corresponding
flag value is 1, the element has the
argument key. If it does the element
has been located, if it does not, the
element does not exist in the table.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

TREE

Trees are nonlinear data structures
whereas strings, arrays, lists, stacks and
queues are linear data structure. The
structure is mainly used to represent data
containing a hierarchical relationship
between elements e.g. records, family trees
and tables of contents.

4.1 BINARY TREES

A binary tree T is defined as a finite set of
elements, called nodes, such that T is
empty(called the null tree or empty tree),
or T contains a distinguished node R, called
the root of T, and the remaining nodes of T
form as ordered pair of disjoint binary
trees T1 and T2

 If T contains a root R then two trees T1

and T2 are called the left and right sub
trees of R.

 If T1 is nonempty, then its root is called
the left successor of R; similarly, if T2 is
nonempty, then its root is called the
right successor of R.

 A conventional method to represent a
binary tree is shown in figure below.

Fig 1: Binary Tree

4.1.1 Description

This tree consists of nine nodes with A as
its root. It’s left sub tree is rooted at B and
its right sub-tree is rooted at C. (This is

shown by the two branches emanating
from A to B on the left and to C on the right)
The absence of a branch indicates an empty
sub tree.

For example:
In fig. 1 the left sub tree of the binary tree
rooted at C and the right sub tree of the
binary tree rooted at E are both empty. The
binary tree rooted at D, G, H, I have empty
right and left sub trees.

4.1.2 BASIC TERMINOLOGY

 If A is the root of a binary tree and B is
the root of its left or right sub-tree, then
A is said to be the father of B and B is
said to be the left or right son of A.

 A node that has no son, such as D, G, H,
and I in figure 2 are called a leaf.

 Node n1 is an ancestor of node n2 (and
n2 is a descendent of n1) if n1 is either
the father of n2 or the father of some
ancestor of n2.

For example:
In figure 1, A is an ancestor of G, and H is a
descendent of C but E is neither an ancestor
nor a descendant of C.

Fig 2: Strictly binary tree

 A node n2 is a left descendant of node n1

is either the left son of n1 (A right
descendent may be similarly defined).

4 TREE

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

 Two nodes are brothers if they are left
and right sons of the same father.

 Strictly Binary Tree: If every non leaf
node in a binary tree has non empty left
and right subtrees, the tree is called as
strictly binary tree. Tree in figure 3 is a
strictly binary tree.

A strictly binary tree with n leaves
always contains 2n – 1 node.

 Level: The root of the tree has level 0,
and the level of any other node in the
tree is one more than the level of its
father.
For example: In figure 1, node E is at
level 2 and node H is at level 3.

 Depth: The depth of a binary tree is the
maximum level of any leaf in the tree
and equals to the length of the longest
path from the root to any leaf. Thus
depth of binary tree in figure 1 is 3.

 If a binary tree contains n nodes at level
m, it contains at most 2n nodes at level
m + 1. Since a binary tree can contain at
most one node at level 0 (the root), if
can contains at most 2m nodes at level
m.

 A complete binary tree of depth d is the
binary tree of depth d that contains
exactly 2d nodes at each level m
between 0 and d. (i. e. the binary tree of
depth d that contains exactly 2d nodes
at level d.)

 The total number of nodes in a
complete binary tree of depth d is tn and
it equals to the sum of the number of
nodes at each level between 0 and d.
Thus, by induction

Tn = 2d+1 - 1
Since all total leaves in such a tree at
level d, the tree contains 2d leaves and
therefore 2d – 1nonleaf nodes

 Almost complete binary tree: A
binary tree of depth d is an almost
complete binary tree if –

1. Any node and at level less than (d
– 1) has two sons.

2. For any node and in the tree with
a right descendent at level d, and
must have a left son and every
left descendent of and is either a
leaf at level d or has two sons.
The figure shown below shows an
almost complete binary tree.

Fig 3: Node numbering for almost
complete binary tree

3. The nodes of an almost complete
binary tree can be numbered so
that root is assigned the number
1, a left son is assigned twice the
number assigned its father and a
right son is assigned one more
than twice the number assigned
its father (It is as shown in figure
3).

4. An almost complete strictly
binary tree with n leaves has 2n –
1 nodes, as same of other strictly
binary tree with n leaves. An
almost complete binary tree with
n leaves that is not strictly binary
has 2n nodes. There are two
distinct almost complete binary
trees with n leaves, one of which
is strictly binary and one of which
is not.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

There is only a single almost
complete binary tree with n nodes.
The tree is strictly binary if and
only if n is odd.

5. The tree of figure 3 is the only
almost complete binary tree with
9 nodes and is strictly because 9
is odd, whereas the tree of figure
5 is the only almost complete
binary tree with ten nodes and is
not strictly binary because 10 is
even.

Fig. 5: Almost complete binary tree but not
strictly binary tree

6. An almost complete binary tree of
depth d is intermediate between
the complete binary tree of depth
d –1, that depth d, which contains
2d-1 nodes and the complete
binary tree of depth d, which
contains 2d+1 - 1 nodes.

If tn is the total number of nodes in an
almost complete binary tree, its depth is
the largest integer less than or equal to
log2 tn

Example:
The almost complete binary trees with 4, 5,
6 and 7 nodes have depth 2 and the almost
complete binary trees with 8, 9, 10, 11, 13,
14, and 15 nodes have depth 3.

4.1.3 APPLICATION OF BINARY TREES

Fig. 6: Binary tree constructed for finding
duplicates

1. A binary tree is a useful data structure
when two-way decisions must be made
at each point in a process.

2. The number of comparisons can be
reduced by using a binary tree. The first
number in the list is placed in a node
that is established as the root of a
binary tree with empty left and right
sub trees. Each successive number in
the list is then compared to the number
in the root.

 If it matches, we have duplicates

 If it is smaller, we observe the left sub
tree

 If it is larger, we observe the right sub
tree

 If the sub tree is empty, the number is
not a duplicate and is placed into a new
node at that position in the tree

 If the sub tree is non-empty, we
compare the number to the contents of
the root of the sub-tree and the process
is repeated with the sub tree.

The figure 6 shows the tree constructed
from the input 14, 15, 4, 9, 7, 18, 3, 5, 16, 4,
20, 17, 9, 14, 5.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

3. Traversing a Binary Tree:

Traversing means to pass through the tree,
enumerating each of its nodes once. All the
nodes of the linear list are visited in a
traversal from first to last. There is no
natural linear order for the nodes of a tree,
therefore different ordering are used for
traversal in different cases. We will define
three recursive traversal methods so that
traversing a binary tree involves visiting
the root and traversing its left and right
sub-trees.

a. Preorder (depth – first order)

To traverse a nonempty binary tree in pre-
order also known as depth-first order. We
perform the following three operations:

Fig. 7: Traversal of binary trees

1. Visit the root
2. Traverse the left sub-tree in pre-
order
3. Traverse the right sub-tree in pre-
order.

b. In-order (Symmetric order)

To traverse a nonempty binary tree in in
order or symmetric order:

1. Traverse the left sub tree in in-order
2. Visit the root
3. Traverse the right sub tree in in-
order

c. Post order

To traverse a nonempty binary tree in post
order

1. Traverse the left sub tree in post
order
2. Traverse the right sub tree in post
order
3. Visit the root

4. Many algorithms that use binary trees
proceed in two phases. The first phase
builds a binary tree, and the second
phase traverses the tree.

Example: Consider the following sorting
method:
Given a list of numbers in an input file, we
wish to print them in ascending order. All
the numbers are inserted into the binary
tree with duplicate values also. When a
number is compared with the contents of a
node in the tree, a left branch is taken if the
number is smaller than the contents of the
node and right branch if it is greater or
equal to the contents of the node. Thus, if
the input list is 14, 4, 15, 3, 9, 14, 18, 7, 9,
16, 20, 5, 17, 4, 5 then the binary tree is
constructed as shown in the figure below.

Fig. 8: Binary tree constructed for sorting

Note: Such a binary tree with a property
that, all elements in the left sub tree of a
node n are less than the contents of n, and

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

all elements in the right subtree of n is
greater than or equal to the contents of n.

A binary tree with such a property is
called binary search tree. If a binary search
tree is traversed in order and the contents
of each node are printed as the nodded is
visited, the numbers are printed in
ascending order.

5. Expressions and their binary tree
representation:
The expression containing operands
and binary operators can be
represented by binary trees as shown in
following figure.

Fig. 9: Expression and their binary
representation

4.1.4 REPRESENATION OF BINARY
TREES IN MEMORY

Let T a binary tree, we will discuss the two
methods to represent T in memory.

i) Link representation of T
ii) Single array or sequential
representation of T.

The important requirement of any
representation of T is that one should
have direct access to the root R of T and
given any node N of T, one should have
direct access to the children of N.

4.1.5 Linked Representation of Binary
Trees

Consider a binary tree T, T will be
maintained in memory by means of a
linked representation which uses three
parallel arrays, INFO, LEFT and RIGHT and
a pointer variable ROOT as follows. Each
node N of T will correspond to a location k
such that
a) INFO[k]contains the data at node N
b) LEFT[k]contains the location of the

left child of node N.
c) RIGHT[k] contains the location of the

right child of node N.
 Also, ROOT will contain the location of

the root R of T. If any subtree is empty,
then the corresponding pointer will
contain the null value, if the tree T is
itself is empty, then ROOT will contain
the null values.
For example: A schematic linked
representation of binary tree T is as
shown in figure below.

Fig. 10: Binary tree representation

 Each node is shown with three fields
and that empty sub trees are pictured
by using X for the null entries. Figure
below shows how this linked
representation may appear in memory.
The choice of 20 elements for the array
is arbitrary and AVAIL list is maintained
as a one – way list using the array LEFT.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Fig. 11: Linked representation of binary
tree in memory

4.1.6 Sequential Representation of
Binary Trees

 Suppose T is a binary tree that is
complete or nearly complete. Then
there is an efficient way of maintaining
T in memory called the sequential
representation of T.
This representation uses only a single
linear array TREE as follows:
a) The root R of T is stored in TREE [1]
b) If a node N occupies TREE [k], then

its left child is stored in TREE [2*k]
and its right child is stored in TREE
[2*k + 1].

 Also, NULL is used to indicate an empty
subtree. In particular TREE[1] = NULL
indicates that the tree is empty.
The sequential representation of the
binary tree T in figure 12(a) below is
shown in figure 12(b).

Fig. 12: Sequential representation of the
binary tree

 The sequential representation of a tree
with depth d will require an array with
approximately 2d+1 elements.
Accordingly, this sequential
representation is usually inefficient
unless as stated above, binary tree T is
complete or nearly complete.

4.1.7 Node representation of a Binary
tree

1. Array node representation: A tree
node may be implemented as array
elements or as allocations of a dynamic
variable. Each node contains info, left, right
and father fields. The left, right and father
fields 3 of a node point to the node`s left
son, right son and father respectively.

 Array implementation of a node
 # define NUMNODES 500
 struct node_type {
 int info;
struct node_type * left, *right,
*father;
}node[NUMNODES];

 Under this, the operations info(p),
right(p) and father (p) are implemented
by reference to node [p].info, node [p].

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

left, node[p].right and node[p].father
respectively and the operations is left
(p), is right(p) and brother(p) can be
implemented using above operations.

 The available, get node, free node etc.
are some operations required to
implement above functions.
Note: The available list is not a binary
tree but a linear list whose nodes are
linked together by the left field is a
binary tree.

 Each node in a tree taken from the
available pool when needed and
returned to available pool when no
longer in use. This representation is
called the linked array representation
of a binary free

2. Dynamic node representation: The
operations info(p), right (p) and father
(p) would by implemented by reference
to Pinfo, pleft, pright and p
father, respectively. Also, explicit
available list is not needed. The
routines get node and free node simply
allocated and free nodes using the
routines malloc and free. This
representation is called Dynamic node
representation.

Note: Both the linked array representation
and the dynamic node representation are
implementation of an abstract linked
representation in which explicit pointers
link together the nodes of a binary tree.

4.1.8 COMPARISON OF TREE AND
BINARY TREE

A tree is a finite non-empty set of elements
in which one element is called the root and
the remaining elements are partitioned
into m > = 0 disjoint subsets, each of which
is itself a tree.

Fig. 13: Examples of tree

Example:

 Each node may be the root of a tree
with zero or more sub-trees.

 A node with no sub trees is a leaf.
(Note: The terms father, son, brother,
ancestor, descendant level and depth is
also available for trees and have same
meaning.)

 The degree of a node in a tree is equal
to the number of its sons. Thus, in fig
13(a) shown above node C has degree 0
node D has degree 1, node B has degr ee
2 etc. There is no upper limit on the
degree of a node.

Equivalent Trees:

 The tree shown in fig. 13(a) and (c) are
equivalent trees.

 Each has A as its root and there sub
trees one of those sub trees has root C
with no sub-trees, another has root D
with a single sub-tree rooted at G and
the third has root B with two sub trees
rooted at E and F.

Note: The only difference is the illustration
of the order in which the sub-trees are
arranged.

 The definition of a tree makes no
distinction among sub trees of a general
tree, while a binary tree, in which a

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

distinction is made between the left and
right sub trees.

Ordered tree: An ordered tree is defined
as a tree in which the sub trees of each
node form an ordered set.

 The first son of a node in an ordered
tree is often called the oldest son of
that node, and the last on is called the
youngest.

 The trees of fig. 17(a) and (c) are
equivalent as unordered trees; they are
different as ordered trees

 A forest is an ordered set of ordered
trees

Comparison of tree and binary tree:

1. Every binary tree except for the empty
binary tree is indeed a tree; however,
not every tree is binary.

2. A tree node may have more than two
sons, whereas a binary tree node may
not.

3. Even a tree whose nodes have almost
two sons is not necessarily a binary tree
because only son in a general tree is not
designated as being a “left” or a “right”
son, whereas in a binary tree, every son
must be either a “left” son or a “right”
son.

4. A non-empty binary tree is a tree, the
designation of left and right have no
meaning within the context of a tree
(except perhaps to order the two sub
trees of those node with two sons.)

5. A non-empty binary tree is a tree each
of whose nodes has maximum of two
sub trees which have the added
designation of “left” or “right”.

4.2 HEADER NODES: THREADS

Consider a binary tree T. Variation of the
linked representation of T are frequently

used because certain operation on T are
easier to implement by using modifications.

4.2.1 Header Nodes

Suppose a binary tree T is maintained in
memory by means of a linked
representation. Sometimes an extra, special
node, called a header node, is added to the
beginning of T. When this extra node is
used, the tree pointer variable, which we
will call HEAD, will point to the header
node, and the left pointer of the header
node will point to the root of T. Fig. 14(b)
shown below shows schematic
representation of the binary tree, in fig.
18(a). It uses a linked representation with a
header node.

Fig. 14(a): Binary tree

Fig. 14 (b): Schematic representation of the
binary tree

 Suppose a binary tree T is empty. Then
T will still contain a header node, but

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

the left pointer of the header node will
contain the null value.
i.e. LEFT [HEAD] = NULL indicate an
empty tree.

 Another variation of the above
representation of a binary tree T, is to
use the header node as a sentinel i. e. if
a node has an empty subtree, then the
pointer field for the sub tree will
contains the address of the header node
instead of the null value. No pointer will
ever contain an invalid address and the
condition, LEFT [HEAD] = HEAD Will
indicate an empty sub tree.

4.2.2 Threads and In order Threading

 In the linked representation of a binary
tree T, approximately fifty percent of
the entries in the pointer fields LEFT
and RIGHT will contain null elements.
This space may be more efficiently used
by replacing the null entries by some
other type of information specification,
we will replace certain null entries by
special pointers which points to node
higher in the tree. These special
pointers are called threads and binary
trees with such pointer are called
threaded trees.

 From ordinary pointers, the threads in
threaded tree must be distinguished.
The threads in the diagram of a
threaded tree are usually denoted by
dotted lines. In memory, an extra 1 – bit
TAG field may be used to distinguish
threads from ordinary pointers or
alternatively, threads may be denoted
by negative integers when ordinary
pointers are denoted by positive
integers.

 There are many ways to thread by
which we can thread a binary tree T,
but each threading will correspond to a
particular traversal of T. Also, one may
select a one way or two threading.
(Note: Here we will see in-order
treading only)

1. In the one-way threading of T, a
thread will appear in the right field
of a node and will point to the next
node in the in order traversal of T.

2. In the two-way threading of T, a
thread will also appear in the LEFT
field of a node and will point to the
preceding node in the in order
traversal of T.

3. Also the left pointer of the first node
and the right pointer of the last node
(in the in order traversal of T) will
contain the null value when T does
not have a header node, but will
point to the header node when T
does have a header node.

Note: There is a similar one way, there is
no threading of T which corresponds to the
post order traversal of T on the other way,
and there is no threading of T which
corresponds to the post order traversal of
T. The following figure shows threading for
a binary tree shown in figure 14(a).

Fig. 15(a): One way inorder threading

Fig. 15(b): Two way inorder threading

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

4.3 BINARY SEARCH TREES

Suppose T is a binary tree, then T is called a
binary search tree (or binary sorted tree) if
each node N of T has the following
property:

The value at N is greater than every value
in the left sub tree of N and is less than
every value in the right sub tree of N.
(Assume that all nodes are distinct).

OR
The value at N is greater than every value
in the left sub tree of N and is less than or
equal to every value in the right sub tree onN.
This is a very important data structure and
it enable one to search for and element
with an average running time f(n) = O(log2
n). It also enables one to easily insert and
delete an item. This structure associates
with the following structures:

a) Sorted Linear Array:

Here one can search for and find an
element with a running time f(n) = O(log2
n) but it is expensive to insert and delete
elements.

b) Linked List:

Here one can easily insert or delete
elements but it is expensive to search and
find an element, since one must use a linear
search with running time f(n) = O(n).
Example:

Fig. 16: Binary tree

4.3.1 SEARCHING AND INSERTING IN
BINARY SEARCH TREES

Let T be a binary search tree, suppose ITEM
information is given. The following
algorithm finds the location of ITEM in the
binary search tree T or insert or ITEM as a
new node in its appropriate place in the
tree.
a) Compare ITEM with the root node N of

the tree
i) If ITEM < N, proceed to the left child

of N.
ii) If ITEM > N, proceed to the right

child of N.

b) Repeat Step (a) until one of the
following occurs:
i) We meet a node N such that ITEM =

N. In this case the search is
successful, and we insert ITEM place
of the empty sub tree. In other
words, proceed from the root R
down through the tree T until
finding ITEM in T or inserting ITEM
as a terminal node in T.

Example:

Consider the binary search tree T in figure
20. Suppose ITEM = 20 is given.
Simulating the above algorithm, we obtain
the following steps:
1. Compare ITEM = 20 with the root, 38, of

the tree T. Since 20 < 38, proceed to the
left child of 38, which is 14.

2. Compare ITEM = 20 with 14. Since 20
>14, proceed to the right child of 14,
which is 23.

3. Compare ITEM = 20 with 23. Since 20 >
23, proceed to the left child of 23, which
is 18.

4. Compare ITEM = 20 with 18. Since 20 >
18 does not have a right child, insert 20
as the right child of 18. Figure 17 shows
the new tree with ITEM = 20 inserted in
tree shown in figure 16.. The shaded
edges indicate the path down through
the tree during the algorithm.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Fig. 17: Binary tree with insertion of item
20

Procedure:

The formal presentation of our search and
insertion algorithm will use the following
procedure which finds the location of a
given ITEM and its parent. The procedure
traverses down the tree using the pointer
PTR and the pointer SAVE FOR THE
PARENT NODE. This procedure will also be
used in the next section, on deletion.
Observe that in Step 6, we move to the left
child or the right child according to
whether ITEM < INFO [PTR] or ITEM >
INFO [PTR]

Algorithm:

The formal statement of our search and
insertion algorithm follows.
Observe that, in Step 4, there are there
possibilities: (1) the tree is empty, (2) ITEM
is added as a left child and (3) ITEM is
added as a right child.

4.3.2 Complexity of the searching
Algorithm

Suppose we are searching for an item of
information in a binary search tree T.
Observe that the number of comparisons is
bounded by the depth of the tree. This
comes from the fact that we proceed down
a single path of the tree. Accordingly, the

running time of the search will be
proportional to the depth of the tree.
Suppose we are given n data items, A1, A2,
………….AN, and suppose the items are
inserted in order into a binary search tree
T. Recall that there are n! Permutations of
the n items. Each such permutation will
give rise to a corresponding tree. It can be
shown that the average depth of the n!
trees is approximately (c log2 n), where c =
1.4. Accordingly, the average running time
f(n) to search for an item in a binary tree T
with n elements is proportional to log2 n,
f(n) = O(log2 n).

4.3.3 Application of Binary Search Trees

Consider a collection of n items, A1, A2,
………AN. Suppose we want to find and
delete all duplicates in the collection. One
straightforward way to do this is as follows:

Algorithm A:

Scan the elements from A1 to AN (that is,
from left to right).
a) For each element Ak, compare Ak with

A1, A2,……….,Ak-1, that is, compare Ak

with those elements which precede Ak.
b) If Ak does occur among A1, A2,……..,Ak-1,

then delete Ak.
After all elements have been scanned, there
will be no duplicates.

EXAMPLE
Suppose Algorithm A is applied to the
following list of 15 numbers:
14, 10, 17, 12, 10, 11, 20, 12, 18, 25, 20, 8,
22, 11, 23
Observe that the first four numbers (14, 10,
17 and 12) are not deleted. However,

5A 10 is deleted since 5 2A A

8A 12 is deleted since 8 4A A

11A 20 is deleted since 11 7A A

14A 11 is deleted since 14 6A A

When Algorithm A is finished running, the
11 numbers - 14, 10, 17, 12, 11, 20, 18, 25,
8, 22, 23 which are all distinct, will remain.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Consider now the time complexity of
algorithm A, which is determined by the
number of comparisons. First of all, we
assume that the number d of duplicates is
very small compare with the number n of
data items. Observe that the step involving
Ak will require approximately k -
1comparisons, since we compare Ak with
items A1,A2,……..Ak-1(less the few that may
already have been deleted). Accordingly,
the number f(n) of comparisons required
by Algorithm A is approximately
0+1+2+3+………….+(n-2)+(n–1)=

2(n - 1)n
= O(n)

2
For example, for n = 1000 items,
Algorithm A will require approximately
500000 comparisons. In other words, the
running time of Algorithm A is proportional
to n. Using a binary search tree, we can give
another algorithm to find the duplicates in
the set A1, A2,……..,AN of n data items.

Algorithm B:
Build a binary search tree T using the
elements A1, A2, ……..An. In building the
tree, delete Ax from the list whenever the
value of Ak already appears in the tree.
The main advantage of Algorithm B is that
each element Ak is compared only with the
elements in a single branch of the tree. It
can be shown that the average length of
such a branch is approximately c log2 k,
where c = 1.4. Accordingly, the total
number f(n) of comparisons required by
Algorithm B is approximately O(nlog2n).
That is, f(n) = O(n log2 n). For example, for
n = 1000, Algorithm B will require 10000
comparisons rather than the 500000
comparisons with Algorithm A(We note
that, for the worst case, the number of
comparisons for Algorithm B is the same as
for Algorithm A.)

EXAMPLE
Consider again the following list of 15
numbers:
14, 10, 17, 12, 10, 11, 20, 12, 18, 25, 20, 8,
22, 11, 23

Fig. 18: Binary tree

Applying Algorithm B to this list of
numbers, we obtain the tree in fig. 18.
The exact number of comparisons is
0 1 1 2 2 3 3 3 3 2 4 4 5 38            

On the other hand, Algorithm A requires
0 + 1 + 2 + 3 + 2 + 4 + 5 + 4 + 6+ 7 + 6 + 8 +
9 + 5 + 10 = 72 comparisons.

4.3.4 Deleting in a Binary Search Tree

Suppose T is a binary search tree and
suppose an ITEM of information is given.
This section given an algorithm which
deletes ITEM from the tree T.
The deletion algorithm first uses Procedure
1 to find the location of the node N which
contains ITEM and also the location of the
parent node P(N). The way N is deleted
from the tree depends primarily on the
number of children of node N. There are
three cases:

Case1:
N has no children. Then N is deleted from T
by simply replacing the location of N in the
parent node P(N) by the null pointer.

Case 2:
N has exactly one child. Then N is deleted
from T by simply replacing the location of
N in P(N) by the location of the only child
of N.

Case 3:
N has two children. Let S(N) denote the in
order successor of N. Then N is deleted

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

from T first deleting S(N) from T (by
using case 1 or case 2) and then replacing
node N in T by the node S(N).

Observe that the third case is much more
complicated than the first two cases. In all
three cases, the memory space of the
deleted node N is returned to the AVAIL
list.

Fig. 19: Linked representation before
deletion

Fig. 20: Linked representation after
deletion

Our deletion algorithm will be stated in
terms of Procedures 1 and 2 which follow.
Procedure 1 refers to cases 1 and 2, where
the deleted node N does not have two
children and procedure 2 refers to case 3,
where N does have two children. There are
many sub cases which reflect the fact that N
may be a left child, a right child or the root.
Also, in case 2, N may have a left child or a
right child.

Procedure 2 treats the case that the
deleted node N has two children. We note
that the in-order successor of N can be
found by moving to the right child of N and
them moving repeatedly to the left until
meeting a node with an empty left sub-ree.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

5.1 HEAP

Fig. 1(a): Heap

Fig. 1(b): Sequential representation of heap
tree

Suppose H is a complete binary tree with n
elements. (Unless otherwise stated, we
assume that H is maintained in memory by a
linear array TREE using the sequential
representation of H, not a linked
representation.) H is called a heap or a max
heap, if each node N of H has the following
property; The value at N is greater than or
equal to the value at each of the children N.
Accordingly, the value at N is greater than or
equal to the value at any of the descendants
of N. (A minheap is defined analogously; The
value at N is less than or equal to the value at

any of the children of N.)

Example
Consider the complete tree H in Fig. 1.
Observe that H is heap. This means, in
particular, that the largest element in H
appears at the “top” of the heap, that is, at
the root of the tree. Figure 1(b) shows the
sequential representation of H by the array
TREE. That is, TREE [1] is the root of the tree

H and the left and right children of node
TREE [K] are, respectively, TREE [2K] and
TREE [2K+1]. This means, that the parent of
any node TREE [J] is the node TREE [J/2]
(where J/2 means integer division).
Observe that the nodes of H on the same
level appear one after the other in the array
TREE.

5.1.1 Insertion into a Heap:

INSHEAP (TREE, N, ITEM)
A heap H with N elements is stored in the
array TREE, and ITEM information is given.
This procedure inserts ITEM as a new
element of H. PTR gives the location of ITEM
as it rises in the tree and PAR denotes the
location the parent of ITEM.

1. [Add new node to H and initialize PTR.]
Set N: = N + 1 and PTR: = N.

2. [Find locations to insert ITEM.]
Repeat Steps 3 to 6 while PTR < 0.

3. Set PAR: = [PTR/2] [Location of parent
node.]

4. If ITEMTREE [PAR], then:
Set TREE [PTR]: = ITEM, and Return.
[End of If structure.]

5. Set TREE [PTR]: = TREE [PAR]. [Moves
node down.]

6. Set PTR: = PAR. [Updates PTR.]
[End of Step 2 loop.]

7. [Assign ITEM as the root of H]
Set TREE [1]:=ITEM.

8. Return

Observe that ITEM is not assigned to an
element of the array TREE until the
approximate place for ITEM is found. Step 7
takes care of the special case that ITEM
raises to the root TREE [1].

Suppose an array A with N elements
is given. By repeatedly applying the above
procedure to A, that is, by executing
Call INSHEAP (A, J, A [J+1])

5 HEAP & HEIGHT BALANCED TREE

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

For J = 1, 2,…….., N – 1, we can build a heap H
out of the array A.

5.1.2 Deleting the Root of a Heap

Suppose H is heap with N elements, and
suppose we want to delete the root R of H.
This is accomplished as follows:

1. Assign the root R to some variable
ITEM.

2. Replace the deleted node R by the
last node L of H so that H is still a
complete tree, but not necessarily a
heap.

3. (Heapify) Let sink to its appropriate
place in H so that H is finally a heap.
Again we illustrate the way the
procedure works before stating the
procedure formally.

Example:

Fig. 2: Heap tree

Consider the heap H in Fig. 2(a), where R =
95 is the root and L = 22 is the last node of
the tree. Step 1 of the above procedure
deletes R = 95 and Step 2 replaces R = 95 by
L = 22. This gives the complete tree in Fig.
2(b), which is not a heap. Observe, however,
that both the right and left sub trees of 22
are still heaps. Applying Step 3, we find the
appropriate place of 22 in the heap as
follows:

a) Compare 22 with its two children, 85 and
70. Since 22 is less than the larger child,
85, interchange 22 and 85 so the tree
now looks like Fig. 2(c).

b) Compare 22 with its two new children,
55 and 33. Since 22 is less than the larger
child 55, so interchange 22 and 55 and
now it’s look like Fig. 2(d).

c) Compare 22 with its new children, 15
and 20. Since 22 are greater than both of
its children, node 22 has dropped to its
appropriate place in H.
Thus fig. 2(d) is the required heap H
without its original root R.

Note: As with inserting an element into a
heap, one must verify that the above
procedure does always yield a heap as a final
tree. We also note that Step 3 of the
procedure may not end until the node l
reaches the bottom of the tree, i. e., until L
has no children. The formal statement of our
procedure follows.

5.1.2 Application to Sorting

Suppose an array A with N elements is given.
The heap sort algorithm to sort A consists of
the two following phases:

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Phase A:
Build a heap H out of the element of A.

Phase B:
Repeatedly delete the root elements of A.
Since the root of H always contains the
largest node in H, Phase B deletes the
elements of A in decreasing order.

Algorithm:

HEAPSORT (A, N)
An array A with N elements is given. This
algorithm sorts the elements of A.

1. [Build a heap H]
Repeat for J = 1 to N – 1:
Call INSHEAP (A, J, A [J+1])
[End of loop.]

2. [Sort A repeatedly deleting the root of H]
Repeat while N > 1:
(a) Call DELHEAP (A, N, ITEM).
(b) Set A [N + 1]: = ITEM.
[End of Loop]

3. Exit.

The purpose of Step 2(b) is to save space.
That is, one could use another array B to
hold the sorted elements of A and replace
Step 2(b) by Set B [N+1]:= ITEM
However, Step 2(b) does not interfere with
the algorithm, since A [N+1] does not
belongs to heap H.

5.1.3 Complexity of Heap sort

Suppose the heap sort algorithm is applied
to an array A with n elements. The algorithm
has two phases and we analyze the
complexity of each phase separately.

Phase A
Suppose H is a heap. Observe that the
number of comparisons to find the
appropriate place of a new elements ITEM in
H cannot exceed the depth of H. Since H is a
complete tree, its depth is bounded by log2
m where m is the number of elements in H.

Accordingly, the total number g(n) of
comparisons to insert the n elements of A
into H is bounded as follows:
g(n)  n log2 n. Consequently, the running
time of Phase A of heap sort is proportional
to n log2 n.

Phase B

Suppose H is a complete tree with m
elements and suppose that the left and the
right sub trees of H are heaps and L is the
root of H. Observe that re-heaping uses 4
comparisons to move the node L one step
down the tree H. Since the depth of H does
not exceed log2 m, re-heaping uses at most 4
log2 m comparisons to find the appropriate
place of L in tree H. This means that the total
number h (n) of comparisons to delete the n
elements of A from H, which requires re-
heaping n times, is bounded as follows:

h (n) nlogn4 2

Accordingly, the running time of phase B of
heap sort is also proportional to n log2 n.

Since each phase requires time
proportional to n log, n, the running time to
sort the n-element array A using heap sort is
proportional to n log2 n, that is, f(n) = O(n
log2 n). Observe that this gives a worst- case
complexity of the heap sort algorithm.

5.2 TREE SEARCHING

 Fig. 3(a): Sorted array and its binary tree
representation

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Fig. 3(b): Sorted array and two of its binary
tree representations

 Using the binary tree notation, the
algorithm for searching for the key `key`
is as follows. Here we assume that each
node contains four fields
k: holds the record’s key value
r: holds the record itself
Left & right: pointers to the sub tree

Algorithm:

1. p = tree;
2. While (p! = null && key! = k(p))
3. p = (key < k(p))? Left (p) : right (p);
4. return (p);

 A sorted array can be produced from a
binary search tree by traversing the tree
in in-order and inserting each element
sequentially into the array as it is visited.
There are many binary search trees that
correspond to a it is visited.
Viewing the middle element of the array
as the root of a tree and observing the
remaining elements recursively as left
and right subtrees produces a relatively

balanced binary search tree as shown in
figure above.
Also, viewing the first element of the
array as the root of a tree, and each
successive element as the right son of its
predecessor produces a very unbalanced
binary tree.

5.2.1 Efficiency of Binary search tree
operations

 The time required to search an element
in binary search tree varies between
O(n) and O(log n), depending on the
structure of the tree. If the records are
inserted in sorted (or reverse) order, the
resulting tree contains all null left (or
right) links, so that the tree search
reduces to a sequential search.

 If the records are presented in random
order (i.e. any permutation of n
elements is equally likely) balanced tree
results more often than not, so that on
the average, search time remains O(log
n)

Internal path length (i): It is defined as the
sum of the levels of all the nodes in the tree.
In the tree shown in figure 4, i= 30.
i. e. 1 node at level 0, 2 at level 1, 4 at level 2,
4at level 3 and 2 at level 4:
1 * 0 + 2 * 1 + 4 * 2 + 4 * 3 + 2 * 4 = 30.

Fig. 4: Deleting nodes from a binary search
tree

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Since the number of comparisons required
to access a node in a binary search tree is
one greater than the node`s level, the
average number of comparisons required for
a successful search in a binary search tree
with n nodes equals (i + n)/n (assuming
equal like hood for accessing every node in
the tree)
Thus, for above tree number of comparisons

= .31.3
13

)1330(




Let Sn equal the average number of
comparisons required for a successful
search in a random binary search tree of n
nodes in which the search argument is
equally likely to be any of the n keys and let
in be the average internal path length of a

Thus, Sn = .
n

)ni(n 

Let level of an external node equals
the number of comparisons in an
unsuccessful search for a key in the range
represented by that external node.
Then, if en is the average external path
length of a random binary search tree of a n
nodes.

Un = en / (n + 1)
This assumes that, each of the (n + 1) keys
range equally likely in an unsuccessful
search However, it can be shown that e = i+
2n for any binary tree of n node. Since,
Sn = (un + n) / n and un = en / (n + 1) this
implies that

Sn = 1u
n

)1n(
n 







 

The average search time in a random binary
search tree is O(log n) and on an average ,
requires approximately only 39% more
comparisons than in a balanced binary tree.

5.3 OPTIMUM SEARCH TREES

A binary search tree that minimizes the
expected number of comparisons for a given
set of keys and probabilities is called
optimum.

The fastest – known algorithm to produce an
optimum binary search tree is O(n2) in the
general case. But unless the tree is
maintained unchanged over a very large
number of searches, is too expensive.

STRUCTRUE

However, although an efficient algorithm to
construct an optimum tree in the general
case does not exist, there are several
methods for constructing near – optimum
trees in O(n) time. Assume n keys, k(1)
through k(n). Let p(i) be the probability of
searching for a key k(i) and q(i) the
probability of an unsuccessful search
between k(1) and k(i) (with q(0) the
probability of an unsuccessful search for a
key below k(1), and q(n) the probability of
an unsuccessful search for a key above k (n).
Define s(i, j) as q(i) + q(i+1) +……+q(j).
One method, called the balancing method,
attempts to find a value i that minimizes the
absolute value of s(0, i-1) – s(i, n) and
establishes k(i) as the root of the binary
search tree, with k(1) through k(i- 1) in its
left sub tree and k(i+ 1) through k(n) in its
right subtree. The process is then applied
recursively to build the left and right
subtrees.

Locating the value i at which abs (s(0,
i-1)–s(i, n)) is minimized can be done
efficiently as follows. Initially, set up an
array s0[n + 1] such that s0[i] equals s(0, i).
This can be done by initializing s0[0] to q(0)
and s0[j–1] + p(j) + q(j) for j from 1 to n in
turn. Once s0 has been initialized, s(i, j) can
be computed for any i and j as s0[j] – s0[i- 1]
–p(i) whenever necessary. We define si(j) as
s0(j-1)–s(j, n). We wish to minimize
abs(si(i)).

After s0 has been initialized, we begin
the process of finding an i to minimize
abs(s0(i-1) – s(i, n)), or si(i). Note that si is a
monotonically increasing function. Note also
that si(0) = q(0)–1, which is negative, and
si(n) = 1–q(n+1), which is positive. Cheek
the values of si (1), si(n), si(2), si(n- 1), si(4),
si(n-3),………., si(2j), si(n+1-2j) in turn until
discovering the first positive si(2j) of the

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

first negative si(n+1-2j). If a positive si(2j) is
found first, the desired i that minimizes
abs(si(i)) lies within the interval [2j-1, 2j]; if a
negative si (n+1–2j) is found first, the
desired i lies within the interval [n +1-2j,
n+1–2j-1]. In either case, i has been narrowed
down to an interval of size 2j-1. Within the
interval, use a binary search to narrow down
on i. The doubling effect in the interval size
guarantees that the entire recursive process
is O(n), whereas if a binary search were used
on the entire interval[0, n] to start, the
process would be 0 (n log n).

A second method used to construct
near–optimum binary search trees is done
by greedy method. Instead of building the
tree from top to down, as in the balancing
method, the greedy method builds the tree
from the bottom to up. The method uses a
doubly linked linear list in which each list
element contains four pointers, one key
value and three probability values. The four
pointers are left and right list pointers used
to organize the doubly linked list and left
and right sub tree pointers are left and right
list pointers used to organize the doubly
linked list and left and right sub tree
pointers used to keep track of binary search
subtrees containing keys less than and
greater than the key value in the node. The
three probability values are the sum of the
probabilities in the left subtree, called the
left probabilities, the probability p(i) of the
node`s key value fc(i), called the key
probability and the sum of the probabilities
in the right subtree, called the right
probability. The total probability of a node is
key value in the ith node is k(i), its left
probability is q(i- 1), its right probability is
q(i) its key probability is p(i), and its left and
right subtree pointers are null.

5.3.1 BALANCED TREES (AVL TREES)

AVL tree sometimes also called Balance
Tree.

A Balance Binary Tree is a binary tree in
which the height of the two sub trees of
every node never differ by more than 1. The

balance of a node in a binary tree is defined
as the height of its left sub tree minus the
height of its right sub tree.

The following figure shows a balance binary
tree. Each node in a balanced binary tree has
a balance of 1, -1 or 0, depending on whether
the height of its left subtree is greater than,
less than, or equal to the height of its right
subtree. The balance of each node is
indicated in figure 5.
Suppose that we are given a balance tree and
use the preceeding search and insertion
algorithm to insert a new node `p` into the
tree. Then the resulting tree may or may not
remain balanced.
Figure 5 illustrates all possible insertions
that may be made.

Fig. 5: Possible insertions in tree

Each insertion that yields a balanced tree is
indicated by B. The unbalanced insertions
are indicated by U and are numbered from 1
to 12.
Tree becomes unbalanced only if the newly
inserted node is a left descendant of a node
that previously had a balance of 1 or if it is a
right descendant of a node that previously
had a balance of -1.
The youngest ancestor that becomes
unbalanced in each insertion is indicated by
the numbers contained in three of the nodes
as shown in figure 5.
A newly created node is inserted into left
sub tree of B, changing the balance of B to 1
and the balance of A to 2 is as shown in
figure 6(a).

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Fig. 6: insertion of a node in left and right
sub-tree

Figure 6(b) shows the newly created node is
inserted into the right sub tree of B,
changing the balance of B to -2 and balance
of A to 3.

To maintain a balance tree it is necessary to
perform a transformation on the tree so that

i) The in-order traversal of the
transformed tree is the same as for the
original tree (i.e., the transformed tree
remains a binary search).
ii) The transformed tree is balanced.

Let the following fig. 7 shown is original tree.

Fig. 7: Original tree

The following two figures show the left
rotation and right rotation respectively.

Fig. 8: Trees after left and right rotation

An algorithm to implement a left rotation of
a subtree rooted at p is as follows:

q = right (p);
hold = left (q);
left(q) = P;
right (p) = hold;

The maximum height of a balanced binary
search tree (AVL tree) is 1.44 log2 n, so that
a search in such a tree never requires more
than 44 percent more comparisons than that
for a completely balance tree.

In actual practice, balance binary
search trees behaves even better, yielding
search times of log2(n+0.25) for large n. On
an average, a rotation is required in 46.5
percent of the insertions.

Insertions requires almost a double
rotation, deletion may require one (single or
double) rotation at each level of the tree or
O(log n) rotations. In practice, an average of
only 0.214 (single or double) rotations has
been found to be required per deletion.

The balance binary search trees
that we have looked at are called height
balanced tree because their height is
used as the criterion for balancing.

There are a number of ways of
defining trees. In one method, the weight of
a tree is defined as the number of external
nodes in the tree. Balanced trees may also be
used for efficient implementation of priority
queues.

Inserting a new element requires at
most O(log n) steps to find its position and
O(1) steps to access the elements and O(log
n) or O(1) steps to delete that leaf.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

5.4 GENERAL SEARCH TREES

General non binary trees are also used a
search tables, particularly in external
storage. There are two type of such trees:
multiday search trees and digital search
trees.

5.5 MULTIDAY SEARCH TREES

A multiday search tree of order n is a
general tree in which each node has n or
fewer sub trees and contains one fewer
key than it has sub trees.

 If a node has four sub trees, it contains
tree keys. In additions, if S0, S1,……Sm-1

are the m sub trees of a node containing
keys k0, k1,……..,km-2 in ascending order,
all keys in sub tree S0 are less than or
equal to k0, all keys in the sub tree Sj

(where j is between 1 and m – 2) are
greater than kj-1 are less than or equal to
kj and all keys in the sub tree Sm-1 are
greater than km-2.

 The sub tree Sj is called the left sub tree
of key kj and its root is called the left son
of key kj. Similarly Sj is called the right
sub tree and its root is the right son of
key kj-1.

The following figure 9 illustrates a number
of multiday search trees.

Fig. 9: Multi-day search tree

In fig. 9(a)
 It is a multiday search tree of order 4.

 The 8 nodes of that tree have been
labelled A through H, Nodes A, D, E, and
G contains the maximum number of sub
trees, 4 and the maximum number of
keys 3. Such nodes are called full nodes.

 Some of the sub tree of nodes D and E
and all of the sub trees of node G are
empty, as indicated by arrows emanating
from the approximate positions in the
nodes.

 Nodes B, C, F and H are not full and also
contain some empty sub trees.

In fig. 9(b)

 It shows a top – down multiday search
tree of order 3.

 Such a tree is characterized by the
condition by the condition that any non-
full node is a leaf in fig 9(a).

 Simi leaf defined as a node with at least
one empty sub tree. Nodes B through H

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

in figure 9(a) are all semi leaves. In fig.
9(b) nodes B through G and I through R
are semi leaves.

 In a top –down multiday tree, a semi leaf
must be either full or a leaf.

In fig. 9(c)

 It is another multiday search tree of order
3.

 It is not top–down, since there are four
nodes with only one key and nonempty
sub trees.

 It does have another special property in
that it is balanced i. e. all its semi leaves
are at the same level (3). This implies
that all semi leaves are leaves.

5.5.1 Searching a Multiday Tree

The algorithm to search a multiday search
tree, regardless of whether it is top-down,
balanced or neither, is straightforward. Each
node contains a single integer field, a
variable number of pointer fields and a
variable number of key fields. If node (p) is a
node, the integer field numtrees(p) equals
the number of sub trees of node(p)
numtrees(p)=1) point to the sub trees of
node(p). The key fields k(p, 0) through k(p,
numtrees(p)-2) are keys contained in
node(p) – 2 inclusive) contains all keys in
the tree between k(p,i-1) and k(p, i). son (p,
0) points to a sub tree containing only keys
less than k(p, 0) and son(p, numtrees(p)–1)
points to a sub tree containing only keys
greater than k(p,numtrees(p)–2). We also
assume a function node search (p, key) that
returns the smallest integer; such that key
<= k(p, j), or numtrees(p)– 1 if key is greater
than all the key in node(p). (We will discuss
shortly how node search is implemented.).
The following recursive algorithm is for a
function search (tree) that returns a pointer
to the node containing key (or –1
[representing null] if there is no such node
in the tree) and sets the global variable
position to the position of key in that node:

1. P = tree;
2. If (p = = null) {
3. Position = -1;
4. return (-11); }/* end if */
5. i= node search(p, key);
6. if (i<numtrees(p, key);
7. if (i<numtrees(p) – 1 && key = = k(p, i)) {
8. position = i;
9. return(p); }/* end if */
10. return (search(son(p, i)));

Note that after setting i to node search (p,
key), we insist on checking the i< numtrees
(p) -1 before accessing k(p, i). This is to
avoid using the possibly nonexistent or
erroneous k(p, numtrees(p) – 1), in case key
is greater than all the keys in node(p). The
following is a no recursive version of the
foregoing algorithm:

1. P = tree ;
2. While (p ! = null) {
/* search the sub trees rooted at node(p) */
3. i = node search(p, key);
4. if (i< numtrees(p) – 1 && key = = k(p, i)){
5. position = 1;
6. return(p);} /*end if */
7. p = son(p, i);}/* end while */
8. position = -1;
9. return(-1);

The function node search is responsible for
locating the smallest key in a node greater
than or equal to the search argument. The
simplest technique for doing this is a
sequential search through the ordered set of
keys in the node. If all keys are of fixed equal
length, a binary search can also be used
locate the appropriate key. The decision
whether to use a sequential or binary search
depends on the order of the tree, which
determines how many keys must be
searched. Another possibility is to organize
the keys within the node as a binary search
tree.

5.6 B-TREE AND B+ TREE

In binary search tree each node contains a
single key and points to two sub trees. A B-

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

trees is a multiday search tree. A B-tree of
order n is a tree in which each non root node
contains at least n div 2 keys. A B-tree of
order n is also called n–(n -1) tree. This
means each node in the tree has a maximum
of (n – 1) keys and n sons. Thus 4-5 tree is a
B-tree of order 5.

Following diagrams show the insertions
process in a B-tree of order 5. When a node
becomes full (i.e. has 4 keys) and an attempt
is made to insert additional key, a split
occurs such that medians of keys is sent up
to the parent.

Initial B – Tree:

Thus inserting 35in the tree results splitting
of node 2

Also inserting 21, 22 will be straight
forward. But on insertion of a Key = 23 will
again split node 2.

which will in turn split node 1 to push 40.

Note: All the leaves are at same level in a B-
tree. Hence it is called Balance - tree.

B + tree:

A major disadvantage of B-tree is the
difficulty of traversing the keys sequentially.
A variation to B – tree is B+ tree in which all
the keys are maintained in the leafs and keys
are replicated in the non-leaf nodes to define
paths for locating individual records. The
leafs are linked together to provide a
sequential path for traversing the keys in the
tree.

To locate a record associated with key = 53
(random access), the key is first compared
with 98. As key is less than 98, left sub tree
is visited. 53 is then compared with 36 and
then with 53 in node B. Since it is less than
or equal to 53 processed to node E where
actual record can be found from there on the
tree can also be read sequentially. Since
record for 53 is found in node E which has a
link to node F with keys 56, 81 and so on.
Thus B+ tree can search a key randomly and
then traverse the tree sequentially.

Construction of B-Tree having order 4
Consider the following key set:
12, 8, 16, 24, 6, 18, 28, 100, 15, 49, 68, 20, 80,
82, 85, 88

1.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

2) Adding 6 will split the root

3) 18, 28 are added in node C

4) Adding 100 will split C

5) 15 goes in C and 49, 68 goes in D, 20
goes in C

6) Adding 22, Causes split at node C.

7) Adding 80 will Causes E to split.

8) Adding 82 & 85 changes F

9) 88 will cause F to solit which will in
turn split the root node A.

5.7 DIGITAL SEARCH TREES

Another method of using trees to expedite
searching is to form a general tree based on
the symbols of which the keys are
composed. For example, if the keys are
integers, then each digit position determines
one of ten possible sons of a given node. A
forest representing one such set of keys is
illustrated in fig. 10. If the keys consist of
alphabetic characters, each letter of the
alphabet determines a branch in the tree.
Note that every leaf node contains the
special symbol eok, which represents the
end of a key. Such a leaf node must also
contain a pointer to the record that is being
stored.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Fig. 10: forest

Using this binary tree representation, we
may present an algorithm to search and
insert into such a nonempty digital tree. As
usual, key is the key for which we are
searching and rec is the record that we wish
to insert if key is not found. We also let
key(i) be the rth symbol of the key. If the key
has n symbols, we assume that key(n) equals
eok. The algorithm uses the get node
operation to allocate a new tree node when
necessary. We assume that recptr is a
pointer to the record rec to be inserted. The
algorithm returns a pointer to the record
that is being sought and uses an auxiliary
function insert, whose algorithm is also
given as-

1. P = tree;
2. father = null; /* father is the father of

 p */
3. for (f = 0;; f++) {
4. q=null; /*q points to the other brother

 of p*/
5. While (p ! = null && symbol (p) < key(i)){
6. sq = p;
7. p = brother (p); }/* end while */
8. if (p = = null | | symbol(p) > key(i)) {
9. ins val = insert(i, p);
10. return (ins val); }/* end if */
11. if (key(i) = = eok)
12. return(son (p));
13. else {
14. father = p;
15. p = son(p); }/* end else */
16. } /*end for */

The algorithm for insert is as follows:

/* insert the jth symbol of the key */
1. s = getnode();
2. symbol(s) = key(i);
3. if (tree = = null)
4. tree = s;
5. else
6. if (q ! = null)
7. Brother(q) = s;
8. else
9. (father == null)? tree = s : son(father) = s;
/* insert the remaining symbols of the key */
10. for (j = 7; key (j)! = eok; j++) {
11. father = s;
12. s = get node();
13. symbol(s) = key(j + 1);
14. son(father) = s;
15. brother(s) = null; }/* end for */
16. son(s) = addr(rec);
17. return(son(s));

Note: That by keeping the table of keys as a
general tree, we need to search only a small
list of sons to find whether a given symbol
appears at a given position within the keys
of the table. However, it is possible to make
the tree even smaller by eliminating those
nodes from which only a single leaf can be
reached. For example, in the keys of figure
11, once the symbol `7` is recognized the
only key that can possibly match is 768.
Similarly, upon recognizing the two symbols
‘1’ and ‘9’, the only matching key is 195.
Thus the forest of Figure 11 can be
abbreviated to the one of figure 11. In figure
11 a box indicates a key and a circle
indicates a tree node. A dashed line is used
to indicate a pointer from a tree node to a
key.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Fig. 11: Condensed forest representing a table of
keys

The binary tree representation of a digital
search tree is efficient when each node has
relatively few sons. The process of searching
through the list of sons to match the next
symbol in the key is relatively efficient.
However, if the set of keys is dense within the
set of all possible keys (that is, if almost any
possible combination of symbols actually
appears as a key), most nodes will have a large
number of sons and the cost of the search
process becomes prohibitive.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

6.1 GRAPH THEORY TERMINOLOGY

A graph is one type of nonlinear data
structure.

Graph and Multi-graphs:

A graph G consists of:
1. A set V of elements called nodes (or
points or vertices)
2. A set E of edges such that each edge e
in E is identified with a unique
unordered pair [u, v] of nodes in V,
denoted by e = [u, v].

We denote graph as, G = (V, E), let’s assume
e [u, v]

 Then the nodes u and v are called the
endpoints of e and u and v are said to
be adjacent nodes or neighbors.

 The degree of a node u (denoted as
deg (u) is the number of edges
containing u.

If deg(u)=0 if u does not belong to
any edge then u is called an isolated
node.
 A path P of length n from a node u to

a node v is defined as a sequence of n
+ 1 nodes such that vi-1 is adjacent to
vi for i=1 to n.
P = (v0, v1, v2,…..,vn)
Such that u = v0; vi-1 is adjacent to v1

for i = 1, 2,………….,n; and vn = v

1. The path P is said to be closed if v0 =
vn

2. The path P is said to be simple if all
the nodes are distinct, with the
exception that v0may equal vn (i.e. P
is simple if the nodes v0, v1,……..vn-1

are distinct and the nodes
v1,v2,……..vn are distinct)

3. A cycle is a closed simple path with
length 3 or more. A cycle of length k
is called a k–cycle.

 A graph G is said to be connected if
there is a path between any two of its
nodes.

 A graph G is said to be complete if
every node u in G is adjacent to every
other node v in graph G. A complete
graph T without any cycle is called a
tree graph or simply a tree. Tree is
not a complete graph always, this
means that, in particular, there is a
unique simple path P between any
two nodes u and v in T and if T is
finite tree with m nodes, then T will
have m – 1 edge.

 A graph G is said to be labeled if its
edges are assigned with some data.

 G is said to be weighted, if each edge
e in G is assigned a nonnegative
numerical value w (e) called the
weight or length of e.

 In such a case, each path P in G is
assigned a weight or length which is
the sum of the weights of the edges
along the path P. If we are given no
other information about weights, we
may assume any graph G to be
weighted by assigning the weight w
(e) = 1 to each edge e in G.

 Multiple edges: Distinct edges e and
e` are called multiple edges if they
connect the same endpoints, i. e. if e =
[u, v] and e` = [u, v]. The graph
containing multiple edges between
two vertices is called a multi-graph.

 Loops: An edge e is called a loop if it
has identical endpoints, i. e. if e = [u,
v]

 A multi-graph M is said to be finite if
it has a finite number of nodes and a
finite number of edges.

 A graph G with a finite number of
nodes must automatically have a
finite number of edges and so must

6 INTRODUCTION TO GRAPH THEORY

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

be finite; but this is not necessarily
true for a multi-graph M, since M may
have multiple edges.

 Distance denoted by d(u, v) between
two vertices u and v is defined as the
length of the shortest path joining u
and v.

 A path is said to be a directed path if
all arcs of the path are directed
towards the same direction. In this,
v2e2v4e3v3 is a directed path but
v1e1v2e2v4 is not a directed path. Also
v2 and v4 are adjacent vertices but v2

and v3 are not adjacent.

Example to illustrate Terminology:

1.

 It is a connected graph with 5 nodes
and 7 edges.

 There are two simple paths of length
2 from B to E :(B, A, E) and (B, C, E).

 There is only one simple path of
length 2 from B and D: (B, C, and D).

 There are two 4-cycles in the graph
[A, B, C, E, A] and [A, C, D, E, A]

 deg(A) = 3, since A belong to 3 edges
deg(C) = 4,
deg(D) = 2

2.

 It is not a graph but a multi-graph

 It has multiple edges e4 = [B, C] and
e5 = [B, C] and it has a loop, e6 = [D,
D]

(From the definition of a graph usually
does not allow either multiple edges or
loops)

3.

 A tree graph with 6 nodes and 5
edges

 There is a unique simple path
between any two nodes of the tree
graph.

4.

 This graph is same as that of Graph
shown in Example 1 except that now
the graph is weighted.

 P1 = (B, C, D) and P2 = (B, A, E, D) are
both path from node B to node D.
Although P2 contains more edges
than P1, the weight W(P2)=9 is less
than the weight W(P1) = 10.

5.

This graph has 3 cycles of lengths 3, 5, 6

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Cycles Length
1-5-6-4 3
1-2-3-4-5-1 5
1-2-3-4-5-6-1 6

6.2 DIRECTED GRAPH:

Directed graph G, also called a diagraph or
graph, is the same as a simple-graph except
that each edge e in G is assigned a direction
or in other way, each edge e is identified
with an ordered pair (u, v)of nodes in G.

 Suppose G is a directed graph with a
directed edge e = (u, v). Then e is also
called an arc. The following terminology
is used with respect to directed graph-
a) u is the origin or initial point of e

and v is the destination or terminal
point of e.

b) u is predecessor of v and v is a
successor or neighbour of u.

c) u is adjacent to v but v is not
adjacent to u.

 The out degree of a node u in G
(denoted as outdeg(u)) is the number of
edges beginning at u. The in degree of u
(denoted as indeg(u)), is the number of
edges ending at u.

 A node u is called a source if it has a
positive out degree but zero in degree.
Similarly, u is called a sink if it has a
zero out degree but a positive in degree.

 A node V is said to be reachable from a
node u if there is a (directed) path from
u to v.

 A directed graph G is said to be
connected or strongly connected if for
each pair u, v of nodes in G there is a
path from u to v and there is also a path
from v to u.

 A graph G is said to be unilaterally
connected if for any pair u, v of nodes in
G there is a path from u to v or a path
from v to u.

Example:

Fig. 1: Directed Graph

The graph in fig. 1 consists of:
1. 4 nodes and 7 (directed) edges
2. The edges e2 and e3 are said to be in

parallel, since each begins at B and ends
at A.

3. The edge e7 is a loop, since it begins and
ends at the same point B.

4. The sequence P1 = (B, C, B, A) is not a
path, since (C, B) is not an edge, i. e., the
direction of the edge e5 = (B, C) does not
agree with direction of the path P1 on
the other hand P2 = (D, B, A) is a path
from D to A, since (D, B) and (B, A) are
edges. Thus A is reachable from D.

5. There is no path from C to any other
node, so G is not strongly connected.
However, G is unilaterally connected.
Also, indeg(D) = 1 and outdeg(D) = 2
Node C is a sink, since indeg(C) = 2 but
outdeg(C) = 0. No node in G is a source.

6.2.1 Advantage of Directed Graph:

 Let T be any nonempty tree graph.
Suppose we choose any node R in T.
Then T with this designated node R is
called a rooted tree and R is called its
root. This defines a direction to the
edges in T, so the rooted tree T may be
viewed as a directed graph.

 Suppose we also order the successors of
each node v in T. Then T is called an
ordered rooted tree. Ordered trees are
almost same as the general trees.

 A directed graph G is said to be simple if
G has no parallel edges. A simple graph
G may have loops, but it cannot have
more than one loop at a given node.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

 A non-directed graph G may be viewed
as a simple directed graph by assuming
that each edge [u, v] in G represents two
directed edges (u, v) and (v, u)

6.3 IN DEGREES AND OUT DEGREES OF
VERTICES OF A DIGRAPH:

Consider the following graph -

Fig. 2: In-degree and Out-degree

Let us consider a vertex U of a digraph D.
The in degree of U is defined as the number
of arcs for which U is head and out degree
is the number of arcs of which u is the tail.

Note: indeg (U) 


)U(dD
indegree of U

in graph D

Outdeg(U) reedegout)U(dD 
 of U in

graph D

6.4 NULL GRAPH:

A graph is said to be null if all its vertices
are isolated.

6.5 FINITE GRAPHS:

A multi-graph is said to be finite if it has a
finite number of vertices and a finite
number of edges.
Note: A simple graph with a finite number
of vertices must automatically have a finite
number of edges and so must be finite.

6.6 TRIVIAL GRAPH:

The finite graph with one vertex and no
edges i. e. a single point is called the trivial
graph.
6.7 SUBGRAPHS:

Consider a graph G = G(V, E). A graph H =
H(V’, E’) is called a sub-graph of G if the
vertices and edges of H are contained in the

vertices and edges of G, i.e. if
.E`EVand`V 

6.7.1 Advantage of Sub-graphs

1) A sub-graph H(V`, E`) of G(V, E) is called
the sub-graph induced by its vertices V`
if its edges set E` contains all edges in G
whose endpoints belong to vertices in
H.

2) if v is vertex in G, then G – v is the sub-
graph of G obtained deleting v from G
and deleting all edges in G which
contain v.

3) If e is an edge in G, then G – e is the sub-
graph of G obtained by simply deleting
the edge from G.

6.8 SEQUENTIAL REPRESENTATION OF
GRAPHS, ADJACENCY MATRIX, PATH
MATRIX

There are two ways of maintaining a graph
G in the memory of a computer.

Fig. 3: Graph representation

6.8.1 Adjacency Matrix:

Suppose G is simple directed graph with m
nodes and suppose the nodes of G have
been ordered and are called v1, v2, …… vm.
Then the adjacency matrix A = (aij) of the
graph G is the m × m matrix defined as
follows:

i j i j

ij

1 if v isadjacent tov , i.e. if there is an edge(v ,v)
a

0 otherwise






Such a matrix A, which contains entries of
only 0 and 1, is called a bit matrix or a
Boolean matrix.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

 The adjacency matrix A of the graph G
does depend on the ordering of the
nodes of G i.e. a different ordering of the
nodes may result in a different
adjacency matrix.

Note: The matrices resulting from two
different ordering are closely related in
that one can be obtained from the other
by simply interchanging rows and
columns.

 Let G be an undirected graph, then the
adjacency matrix A of G will be a
symmetric matrix (i. e. one in which aij =
aji for every i and j). Each undirected
edge [u, v] corresponds to the two
directed edges (u, v) and (v, u).

 The above matrix representation of a
graph may be extended to multi-graph.
If G is a multi-graph, then the adjacency
matrix of G is the m × m matrix A = (aij)
defined by setting aij equal to the
number of edges from vi to vj.

Example:

Consider the graph G, suppose the nodes
stored in memory a linear array `X` as
follows:
 X : A, B, C, D
Then we assume that the ordering of nodes
in G is as follows:

Fig. 4: Graph

V1 = A, V2 = B, V3 = C, v4= D. The adjacency
matrix M of G is as follows:























0100

1001

1101

1000

M

Note: The number of 1’s in A is equal to the
number of edges in G.

Consider the powers M, M2, M3……of the
adjacency matrix A of a graph G.
Let mk (i, j) = the ij entry in the matrix Mk
Note: m1(i, j)= mij gives the number of
paths of length 1 from node vi to vj, Also
m2(i, j) gives the number of paths of length
2 from vi to vj.

6.8.2 Path Matrix:

Let G be a simple directed graph with m
nodes, v1, v2,…..vm. The path matrix or reach
ability matrix of G is the m-square matrix P
= (Pij) defined as follows:

i j

ij

1 if there is a path fromv tov
P =

0 otherwise






 Suppose there is a path from vi to vj.

Then there must be a simple path from
vi to vj when vi Vj or there must be a
cycle from vi to vj when vi to vj when vi =
vj. Since G has only m nodes, such a
simple path must have length m – 1 or
less or such a cycle must have length m
or less.

 A directed graph G is said to be strongly
connected if, for any pair of nodes u and
v in G, there is a path from u to v and
also a path from v to u. Accordingly, G is
strongly connected iff the path matrix P
of G has no zero entries. Thus, the graph
shown in fig. 4 is not strongly
connected.

6.8.3 Transitive Closure:

The transitive closure of a graph G is
defined to be graph G` has the same node as
G and there is an edge (vi, vj) in G`.
Whenever there is a path from vi to vj in G.
The path matrix P of the graph G is
precisely the adjacency matrix of its
transitive closure G. A graph G is strongly

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

connected if its transitive closure is a
complete graph.

WARSHALL’S ALGORITHM

Warshall’s algorithm is an efficient way of
finding the matrix P of the graph G. (where
G is the directed graph with m nodes v1,
v2,……….,vm.

A directed graph G with M nodes is
maintained in memory by its adjacency
matrix. This algorithm finds the (Boolean)
path matrix P of the graph G.

ALGORITHM

We initialize the solution matrix same as
the input graph matrix as a first step. Then
we update the solution matrix by
considering all vertices as an intermediate
vertex. The idea is to one by one pick all
vertices and update all shortest paths
which include the picked vertex as an
intermediate vertex in the shortest path.
When we pick vertex number k as an
intermediate vertex, we already have
considered vertices {0, 1, 2, ... k-1} as
intermediate vertices. For every pair (i, j) of
source and destination vertices
respectively, there are two possible cases.

1) k is not an intermediate vertex in
shortest path from i to j. We keep the
value of dist[i][j] as it is.

2) k is an intermediate vertex in shortest
path from i to j. We update the value of
dist[i][j] as dist[i][k] + dist[k][j].

6.9 SHORTEST PATH ALGORITHM

 Let G be a directed graph with m nodes
v1, v2,……..,vm. Suppose G is weighted i. e.
suppose each edge e in G in assigned a
nonnegative number w(e) called the
weight or length of the edge e.

 G may be stored in memory by its
weight matrix, W = (Wij), defined as
follows:

i j

ij

i j

W(e) if thereisanedgeefromv tov
W =

0 if thereisnoedgefromv tov





The path matrix P tells us whether or
not there are paths between the nodes.
If we want to find a matrix Q which will
tell us the lengths of the shortest paths
between the nodes or, more exactly a
matrix Q = (qij) where

ijq = length of a

shortest path from vi to vj

Algorithm:

A weighted graph G with M nodes is
maintained in memory by its matrix W.
This algorithm finds a matrix Q such that Q
[I, J] is the length of a shortest path from
node VI to VJ. INFINITY is a very large
number, and MIN is the minimum value
function:

1. Repeat for I, J = 1, 2,………….,M :
[Initializes Q] W[I, J] = 0, then : Set Q[I,
J]: = INFINITY;
[End of loop]

2. Repeat Step 3 and 4 for K = 1, 2,……….,M
: [Updates Q]

3. Repeat Step 4 for I = 1, 2,………,M:
4. Repeat for J = 1, 2,………,M:

Set Q[I, J] : = MIN (Q[I, J], Q[I, K] + Q[K,
J]).
[End of loop.]
[End of Step 3 loop.]
[End of step 2 loop.]

5. Exit.

6.10 LINKED REPRESENTATION OF A
GRAPH

Need for Linked representation of a
graph:

Let G be a directed graph with m nodes.
The sequential representation of G in
memory i.e. the representation of G by its

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

adjacency matrix A has some
disadvantages.

i) It may be difficult to insert and
delete nodes in G. Because the size
of A may need to be changed and
the nodes may need to be changed
and the nodes may need to re-
ordered. So there may be many,
many changes in the matrix A.

ii) Also, if the number of edges is O(m)
or O(mlog2 m), then the matrix A
will be sparse(i. e. it will contain
many zeros) hence more space is
wasted. To avoid this, G is usually
represented in memory by linked
representation, also called an
adjacency structure.

 Consider the graph G in the following
figure 5(a).

Fig. 5: Graph with adjacency list
representation

The table in fig. 5(b) Shows, each node
in G followed by its adjacency list, which
is its list of adjacent nodes, also called
its successors or neighbours.

 The following fig. 6(c) and 6(d) shows a
linked representation of G in memory.
Specifically, the linked representation
will contain two lists (or files)
1. A node list NODE
2. An edge list EDGE

6.10.1 Node List:

Each element in the list NODE will
correspond to a node in G and it will be a
record of the form

Fig. 5(c): NODE list linked representation of
G in memory

NODE: The name or key value of the node
NEXT: A pointer to the next node in the list
NODE
ADJ: A pointer to the first element in the
adjacency list of the node, which is
maintained in the list EDGE. Shaded Area:
Indicates that there may be other
information in the record, such as the in
degree during the execution of an
algorithm, and so on.
Note: One may assume that NODE is an
array of records containing fields such as
NAME, INDEG, OUTDEG, STATUS, etc.

6.10.2 Edge List:

Each element in the list EDGE will
correspond to an edge of G and will be a
record of the form:

Fig. 5(d): EDGE list linked representation of
G in memory

DEST: It will point to the location in the list
NODE of the destination or terminal node
of the edge.

LINK: It will link together the edges with
the same initial node i. e. the nodes in the
same adjacency list.

Shaded Arcs:
It indicates that there may be other
information in the record corresponding to
the edge, such as afield EDGE containing
the labelled data of the edge when G is a
labelled graph, a field WEIGHT containing
the weight of the edge when G is a
weighted graph and so, on.
AVAIL:
We need a pointer variable AVAIL for the
list of available space in the list EDGE. The

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

graph G shown in fig 5(a) may appear in
memory as shown in figure 6.

Fig. 6: Graph G in fig 5(a) with pointer
AVAIL

6.11 GRAPH TRAVERSAL

Graph traversal is the systematically
assessment of all the nodes of a graph. It is
always possible to traverse a graph
efficiently by visiting the graph nodes in an
implementation dependent manner.

Graph traversal is more complex than
for a list or a tree:

1) There is no natural “first” node in a
graph from which the traversal should
start, as there is a first node in a list or a
root in a tree. Also, once a starting node
has been determined and all nodes
reachable from that node have been
visited, there may remain other nodes
in a graph that have not been visited
because they are not reachable from the
starting node. Thus, once all reachable
nodes in a graph have been visited, the
traversal algorithm again has the
problem of selecting another starting
node.

2) There is no natural order among the
successors of a particular node. Thus
there is no prior order in which the
successor of a particular node should be
visited.

3) Unlike a node of a list or a tree, a node
of a graph may have more than one

predecessor. If node x is a successor of
both nodes y and z, x may be visited
after u but before z. It therefore
possible for a node to be visited before
one of its predecessor. Also, if a graph is
cyclic, every traversal must include
some node that is visited before one of
its predecessors.

6.12 SPANNING FORESTS:

Forest:
It may be defined as an acyclic graph in
which every node has one or no
predecessors.

Tree:
A tree may be defined as a forest in which
only a single node (i. e. root) has no
predecessors. An ordered Forest is one
whose component trees are ordered.

Spanning Forest:

If G is a graph, then F is a spanning forest of
G if
1. F is a sub graph of G containing all the

nodes of G.
2. F is an ordered Forest containing tree

T1,T2,…..Tn.
3. Ti contains all nodes that are reachable

in G from the root of Ti are not
contained in Tj for some j < i. F is a
spanning tree of G if it is a spanning
forest of G and consists of a single tree.

Example:

Fig. 7: Graph G

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Possible Spanning Forests

Fig. 8: different spanning trees for Graph G

Note: In each forest the arcs of the graph
that are not included in the forest are
shown as dotted arrows and the arcs
included in the forest as solid arrows.
Any spanning tree divides the edges of a
graph into four groups:

1) Tree edges: These are arcs of the graph
that are included in the spanning
Forest.

2) Forward edges: These are arcs of the
graph from a node to a spanning forest
non-son descendant.

3) Cross edges: It is an arc from one node
to another node that is not the first
node is descendant or ancestor in the
spanning forest.

4) Back edges: These arcs from a node to a
spanning forest ancestor.
Consider a method that visits all nodes
reachable from a previously node
before visiting any node reachable from
a previously visited node. In such
traversal a node is visited either
arbitrarily or as the successor of a
previously visited node.
The traversal defines a spanning forest
in which an arbitrarily selected node is
the root of a tree in the spanning forest

and in which a node n1 selected as the
successor of n2 is a son of n2 in the
spanning forest.

6.13 UNDIRECTED GRAPHS AND THEIR
TRAVERSALS:

 An undirected graph may be
represented as a directed graph by
using either the adjacency matrix or
adjacency list method., A>
<B must exist whenever an arc <A, B>
exists.

 The undirected arc (A, B) represents the
two directed arcs <A, B> and <B, A>.

 An adjacency matrix representing an
undirected graph must be symmetric i.
e.value in row i, column j and in row j,
column I must be either both false. (i. e.
the arc (i. j.) does not exist in the graph)
or both true (the arc (i, j) does exist).
In the adjacency list representation, if (i,
j) is an undirected arc, the arc list
emanating from node (i) contains a list
node representing directed are <i, j>
and the list emanating from node (j)
contains a list node representing
directed arc <i, j> and the list emanating
from node (j) contains a list node
representing directed arc <j, i>. In an
undirected graph, if a node x is
reachable from a node y (i.e. there is a
path from y to x), y is reachable from x
as well as along the reversal path.

An undirected graph is represented by a
directed graph, any traversal method
for undirected graphs as well.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Fig. 9: Undirected graph with it’s spanning
trees

Example:
The figure 10 shows, an undirected graph
and two spanning trees for that graph. The
tree in (b) is formed by either of the
traversal ABEFGKCHDIJ or ABEFKGCDHIJ
among others. The tree in figure 10 (c) is
created by the traversals ABDJECHIFGK or
ABEFGKDCJHI.

Spanning Forest constructed by undirected
graph traversal has several special
properties-

1. There is no distinction between
forward edges (or tree edges) and back
edges.
Note: In an undirected graph, any are
between a node and its non-son
descendant is called back edge.

2. In an undirected graph all cross edges
are within a single tree. Cross edges
between trees arise in a directed graph
traversal when there is an arc <x, y>
such that y is visited before x and there
is no path from y to x. Therefore, there
<x, y> is a cross edge.

3. In an undirected graph containing an arc
(x,y), x and y must be part of the same
tree, since each is reachable from the
other via that arc at least.

5. A cross edge in an undirected graph is
possible only if there nodes x, y and z
are part of a cycle and y and z are in
separate sub-trees of a sub-tree whose
root is x.

5. The path between y and z must then
include across edge between the two
sub trees.
Note: Spanning Forests for an
undirected graph have double the edges
of directed graph, therefore forests
tends to have fewer but larger trees.

6.13.1 Terms related to undirected
graphs

1) Connected:
An undirected graph is connected if every
node in it, is reachable from every other
node.

Example:

Fig. 10:Connected and not connected graph

2) Connected Component:
A connected component of all undirected
graph is a connected sub graph containing
all arcs incident to any of its such that no
graph node outside the sub graph
reachable from any node in the sub graph.

Example:

Fig. 11: connected components of Graph

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

It has there connected components:
 nodes A, B, C, D, F
 nodes E and G
nodes H
A connected graph has a single connected
component.

3) Spanning Forest:

The spanning Forest of a connected graph
is a spanning tree. Each tree in the
spanning forest of an undirected graph
contains all the nodes in a single connected
component of a graph.

6.13.2 Traversing Methods:

Many graph algorithms require one to
properly observe the nodes and edges of a
graph G. There are two standard ways of
doing this:
1) Breadth – First search or breadth – first

traversal
2) Depth – First search or depth – first

traversal.
Breadth First search will use a queue as
an auxiliary structure to hold nodes for
future processing and the depth first
search will use a stack. During the
execution of an algorithm, each node N
of G will be in one of three states, called
the status of N as follows:

STATUS = 1: (Ready state) The initial of N
as follows:
STATUS =2: (Waiting state) The node N is
on the queue or stack, waiting to be
processed.
STATUS = 3: (Processed state). The node
N has been processed.

1) Breadth First Search:
A breadth first search beginning at a
starting node A is as follows:
 First we examine the starting node A
 Then we examine all the neighbor of A
 Then we examine all the neighbors of

the neighbors of A and so on. We need
to keep track of the neighbors of a node
and we need to guarantee that no node

is processed more than once. This is
accomplished by using a queue to hold
nodes that are waiting to be processed
and by using a field STATUS which tells
us the current status of any node.

Algorithm:

This algorithm executes a breadth –first
search on a graph G beginning at a starting
node A.
1. Initialize all nodes to the ready state

(STATUS = 1).
2. Put the starting node A in QUEUE and

change its status to the waiting state
(STATUS= 2).

3. Repeat Steps 4 and 5 until QUEUE is
empty:

4. Remove the front node N of QUEUE.
Process N and change the status of N to
the processed state (STATUS = 3)

5. Add to rear of QUEUE all the neighbors
of N that are in the steady state
(STATUS = 1), and change their status
to the waiting state(STATUS = 2).
[End of Step 3 loop.]

6. Exit.
This algorithm will process only those
nodes which are reachable from the
starting node A. Suppose we wants to
examine all the nodes in the graph G. Then
the algorithm must be modified so that it
begins with another node (let say B) that is
still in the ready state. This node B can be
obtained by traversing the list of nodes.

2) Depth – First search /Depth first
traverse

A depth – first search beginning at a
starting node A is as follows:
 First we examine the starting node A
 Then we examine each node N along a

path P which begins at A i.e. we process
a neighbor of A, then a neighbor of A,
then a neighbor of a neighbor of A and
so on.

 After coming to a “dead end” i.e. the end
of the path P, We back track on P until
we can continue along another path P
and so on.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Note: The algorithm is very similar to the
breadth – first search except that we now
use a stack instead of the queue. A field
STATUS is used to tell us the current status
of anode.

Algorithm:
This algorithm executes a depth – first
search on a graph G beginning at a starting
node A.
1. Initialize all nodes to the ready state

(STATUS= 1).
2. Push the starting node A onto STACK

and change its status to the waiting
state (STATUS = 2).

3. Repeat Steps 4 and 5 until STACK is
empty.

4. Pop the top node N of STACK. Process N
and change its status to the processed
state (STATUS = 3).

5. Push onto STACK all the neighbors of N
that are still in the ready state (STATUS
=1), and change their status to the
waiting state (STATUS = 2).
[End of Step 3 loop.]

6. Exit.

The above algorithm will process only
those nodes which are reachable from the
starting node A. Suppose we wants to
examine all the nodes in G. Then the
algorithm must be modified so that it
begins again with another node (say node
B) that is still in ready state. This node B
can be obtained by traversing the list of
nodes.

6.13.3 Applications of Depth – First
traversal

1. Depth first traversal creates a spanning
forest than can be used to determine if
an undirected graph is connected and to
identify the connected components of
an undirected graph.

2. Depth First traversal can also be used to
determine if a graph is acyclic. In both
directed and undirected graphs, a cycle

exists if a back edge exists in a depth
first spanning forest.

3. Depth First traversal can be used to
produce are verse topological ordering
of the nodes.

4. An algorithm to determine a reverse
topological ordering of the nodes of
DAG consists of a depth first search of
the DAG followed by an inorder
traversal of the resulting spanning
forest.

6.13.4 Efficiency of Depth–First
traversal

The depth First traversal routine visits
every node of a graph and traverses all the
successors of each node.

For adjacency matrix implementation

Traversal all successors routine of a
node O(n)
Traversing the successors of all the
nodes O(n2)
Depth–first search using the adjacency
matrix representation is O (n + n2) (n node
visits and n2 possible successor
examination)= O(n2) (By sum Rule)
Note: Where n is the number of graph
nodes.

For adjacency list representation

 Traversing all successors of all nodes
O(e)

 Assuming that the graph nodes are
organized as an array or a linked list,
visiting all n nodes is O(n), so that the
efficiency of depth – first traversal using
adjacency list is O(n + e).Since e is
usually much smaller than n2, the
adjacency list representation yields
more efficient traversal.

 Depth first traversal is often considered
O(e),since e is usually larger than n.

Note: e is the number of edges in a graph.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Application of breadth traversal

1. Breadth first traversal can be used for
some of the same application as depth
first traversal. In particular breadth
first traversal can be used to determine
if an undirected graph is connected to
identify the graphs connected
components.

2. It can also be used to determine if a
graph is cyclic. For a directed graph,
this is detected when a back edge is
found, for an undirected graph it is
detected when a cross edge within the
same tree is found.

3. For an un-weighted graph, first
traversal canal so be used to find the
shortest path from one node to another.
The breadth – first tree path from the
root to the target is the shortest path
between the two nodes.

Efficiency of breadth first traversal

The efficiency of breadth first traversal is
the same as that of depth first traversal,
each node is visited once and all arcs
emanating from every node are considered.
Efficiency for the adjacency list graph
representation = O(n + e).

6.14 MINIMUM SPANNING TREES

Given a connected weighted graph G, it is
often desired to create a spanning tree T
for G such that sum of the weights of the
tree edges in T is as small as possible. Such
a tree is called a minimum spanning tree.

Prim’s Algorithm:

 An arbitrary node is chosen initially as
the tree root.
Note: In an undirected graph and its
spanning tree, any node can be
considered the tree root and the nodes
adjacent to it as its sons.
The nodes of the graph are then
appended to the tree one at a time until
all nodes of the graph are included.

Prim`s algorithm may therefore be
implemented as follows:
Root= an arbitrary node chosen as root;
(every node nd in the graph){
Distance [nd] = weight (root, nd);
Closest[nd] = root ;
}/* end for */
distance[root] = INFINITY;
current = root;
for (i= 1; i<number of nodes in the
graph;++i){
/* find the node closed to the tree */
mindist = INFINITY;
for (every node nd in the graph)
if (distance[nd] < mindinst){

current = nd;
mindist = distance[nd];
}
/* end if */

/* add the closest node to the tree */
/* and adjust distance */
addson(closest[current],current);
distance[current] = INFINITY;
for (every node nd adjacent to current)

if (distance[nd] < INFINITY)
&& (weight (current, nd) <
distance [nd]) {

distance[nd] = weight
(current, nd);
closes[nd] = current ;
} /* end if */

} /* end for */

 If the graph is represented by an
adjacency matrix, each for loop in
Prim`s algorithm must examine O(n)
nodes. Since the algorithm contains a
nested for loop, it is O(n2)

 Prim’s algorithm can be made more
efficient by maintaining the graph using
adjacency lists and keeping a priority
queue of the nodes not in the partial
tree.

 The first inner loop can then be
replaced by removing the minimum
distance node from the priority queue
and adjusting the priority queue.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

 The second inner loop simply traverses
an adjacency list and adjusts the
position of any nodes whose distance is
modified in the priority queue. Under
this implementation Prim`s algorithm is
O((n + e) log n)

Kruskal’s Algorithm

 Like Prim’s algorithm, Kruskal’s
algorithm also constructs the minimum
spanning tree of a graph by adding
edges to the spanning tree one by one.
At all points during its execution the set
of edges selected by Prim`s algorithm
forms exactly one tree. On the other
hand, the set of edges selected by
Kruskal’s algorithm terms a forest of
trees.

 The set T of edges is initially empty. As
the algorithm progresses, edges are
added to T. So long as it has not found a
solution, the partial graph formed by
nodes of G and edges in T consists of
several connected components.

 The elements of T included in a given
connected component form a minimum
spanning tree for the nodes in the
component. At the end of the algorithm
only one connected component
remains, so T is then a minimum
spanning tree for all the nodes of G.

 We observe the edges of G in order of
increasing length. If an edge joints two
nodes in different connected
components, we add it to T. Also the
two connected components now form
only one component. Otherwise the
edge is rejected, it joins two nodes in
the same connected component and
therefore cannot be added to T without
forming a cycle (because the edges in T
form a tree for each component) l. The
algorithm stops when only one
connected component remains.

 aTo illustrate this algorithm consider
the fig. 15 diagram In increasing order
of length the edges are:{1, 2}, {2, 3}, (4,
5}, {6, 7}, {1, 4}, (2, 5}, {4, 7},{3, 5}, {2,
4}, {3, 6},{5, 7} and {5, 6}, the algorithm
proceeds as follows:

Step
Initialization

Edge
Considered

Connected Components
{1},{2},{3},{4}{5}{6}{7}

1 ({1,2} {1,2}{3}{4}{5}{6}{7}
2 {2,3} {1,2}{3}{4}{5}{6}{7}
3 {4,5} {1,23}{4,5}{6}{7}
4 {6,7} {1,2,3}(4,5}{6,7}
5 {1,4} {1,2,3,4,5}{6,7}
6 {2,5} Rejected
7 {4,7} {1,2,3,4,5,6,7}

When the algorithm stops, T contains the
chosen edges {1, 2}, {2, 3}, {4, 5}, {6, 7}, {1,
4} and {4m, 7}

Note: The minimum spanning tree is
shown by dark lines in the above figure and
its total length is17.

Running Time Analysis

We can evaluate the execution time of the
algorithm as follows. On a graph with n
nodes and e edges the number of operation
s is in
1) O(eloge) to sort the edges, which is

equivalent to O(e log n) because (n–1)
2/)1n(na 

2) O(n) to initialize the n distinct sets.
3) O(2e(2e, n)) for all find and merge

operations, (where  is the slow
growing function, and there are almost
2e find operation s and n – 1 merge
operation on a universe containing n
elements.)

4) At worst O(e) for the remaining
operation.
Total time for the algorithm is in O(e
log n) because O ((2e, n) O(log n).

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Introduction

In an algorithm design there is no perfect
technique that is a cure for all computation
problems. Different problems require the
use of different kinds of techniques. A good
programmer uses all these techniques
based on the type of problem. Some
commonly-used techniques are:

 Divide and conquer

 Randomized algorithms
 Greedy algorithms
 Dynamic programming

7.1 Greedy Algorithm:

A greedy algorithm, as the name
suggests, always makes the choice that
seems to be the best at that moment. This
means that it makes a locally-optimal
choice with the hope that it will lead to a
globally-optimal solution.

Greedy Method:

The greedy method is one of the most
straight forward algorithm design
technique; and it can be applied to a wide
variety of problems.

The greedy method suggests that
one can devise an algorithm which works
in stages, considering one input at a time.
At each stage, a decision is made regarding
whether or not a particular input is in an
optimal solution.

This is done by considering the
inputs in an order determined by some
selection procedure. If the inclusion of next
input into the partially constructed optimal
solution then this input is not added to the
partial solution. Most problems have ‘n’
input and require us to obtain subset that
satisfied some constraints is called a
feasible solution. We are required to find a
feasible solution that optimizes (minimum

or maximizes) a given objective function. A
feasible solution that does this is called an
optimal solution.

Greedy algorithms have some advantages
and disadvantages:

1. It is quite easy to come up with a greedy
algorithm (or even multiple greedy
algorithms) for a problem.

2. Analyzing the run time for greedy
algorithms is easier than for other
techniques (like Divide and conquer).
For the Divide and conquer technique, it
is not clear whether the technique is
fast or slow. This is because at each
level of recursion the size of gets
smaller and the number of sub-
problems increases.

3. It is very much hard to understand
correctness issues in Greedy technique.
Even with the correct algorithm, it is
hard to prove why it is correct. Proving
that a greedy algorithm is correct is
more of an art than a science. It involves
a lot of creativity.

Greedy Algorithm Based Problems:

1. Activity Selection Problem
2. Job Sequencing Problem
3. Huffman Coding
4. Kruskal’s Minimum Spanning Tree
5. Prim’s Minimum Spanning Tree
6. Dijkastra’s Shortest Path Algorithm

Shortest Path Problem:

Consider a directed graph G in which every
edges has a non-negative weight attached,
and our problem is to find a path from one
vertex ‘v’ to another ‘w’ such that the
weights on the path is as small as possible
such a path is called ‘shortest path’. The
weights may represent costs, time or some
quantity other than distance.

7 DESIGN TECHNIQUES

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Consider example of airline routes,
with each vertex representing a city and
the weight on each edge the cost of flying
from one city to the second. The problem is
to find routine from city ‘v’ to city ‘w’ such
that total cost is a minimum.

Fig. 1: Directed graph with weights

Consider the directed graph as shown in
fig.1. The shortest path from vertex 0 to
vertex 1 goes via vertex 2 and has a total
cost of 4, compared to the cost of 5 for the
edge directly from 0 to 1 and the cost of 8
for the path via vertex 4.

From starting node (vertex) called
the source and finding the shortest path to
every other vertex for simplicity, we take
the source to be vertex 0, and our problem
then consist of finding the smallest path
from vertex 0 to every other vertex in the
graph. The basic requirement is that the
weights are all non–negative.

Fig. 2: shortest path for given graph

The directed graph shown in part (a), the
initial situation is shown in part (b). The set
S consist of 0 alone, and the entries of the
distances table D.

The distances to vertex 4 is shortest,
so 4 is added to S in part (c) and the
distance D[4] is updated to the value 6.
Since the distance to vertices 1 and 2 via
vertex 4 and are greater than those already
recorded in T, their entries remain
unchanged.

The next closet vertex to 0 is vertex
2, and it is added in part (d), which also
shows the effect of updating the distance to
vertices 1 and 3. Its paths are via vertex 2
and are shortest than those preciously
recorded. The finials two steps, shows in
part (e) and (f), add vertices 1 and 3 to 5
and yield the paths and distance shown in
the finial diagram.

7.2 Divide and Conquer Algorithm:

This paradigm, divide-and-conquer, breaks
a problem into sub-problems that are
similar to the original problem, recursively
solves the sub-problems, and finally
combines the solutions to the sub-
problems to solve the original problem as
shown in fig 3. Because divide-and-conquer
solves sub-problems recursively, each sub-
problem must be smaller than the original
problem, and there must be a base case for
sub-problems. You should think of a divide -
and-conquer algorithm as having three
parts:

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

1. Divide: Break the given problem into
sub-problems of same type.

2. Conquer: Recursively solve these sub-
problems

3. Combine: Appropriately combine the
answers

Fig. 3: Divide and conquer strategy

Divide and Conquer based Problems:

1. Binary Search
2. Quick Sort
3. Merge Sort
4. Matrix Multiplication (Strassen's-

algorithm)
5. Maximal Subsequence
6. Fractional knapsack

Binary Search: A Divide and Conquer
algorithm to find a key in an array.

Precondition: S is a sorted list

index binsearch (number n, index low,
index high, const keytype S[], keytype x)

 if low ≤ high then
 mid = (low + high) / 2

 if x = S[mid] then
 return mid

 elsif x < s[mid] then
 return binsearch(n, low, mid-1, S, x)

 else
 return binsearch(n, mid+1, high, S, x)

 else
 return 0

 end binsearch

Divide: search lower or upper half
Conquer: search selected half
Combine: None

Performance:
T(n)=T(n/2)+Θ(1)
T(n)=Θ(logn)

7.3 Dynamic programming:

Dynamic Programming is an algorithmic
paradigm that solves a given complex
problem by breaking it into sub-problems
and stores the results of sub-problems to
avoid computing the same results again.

If the given problem can be broken up in to
smaller sub-problems and these smaller
subproblems are in turn divided in to still-
smaller ones, and in this process, if you
observe some over-lapping subproblems,
then it’s a big hint for DP. Also, the optimal
solutions to the sub-problems contribute to
the optimal solution of the given problem
(referred to as the Optimal Substructure
Property).

There are two ways of doing this.

1. Top-Down: Start solving the given
problem by breaking it down. If you see
that the problem has been solved
already, then just return the saved
answer. If it has not been solved, solve
it and save the answer. This is usually
easy to think of and very intuitive. This
is referred to as Memoization.

2. Bottom-Up: Analyze the problem and
see the order in which the sub-
problems are solved and start solving
from the trivial subproblem, up towards
the given problem. In this process, it is
guaranteed that the subproblems are
solved before solving the problem. This
is referred to as Dynamic Programming.

Dynamic Programming problems:

1. Longest Common Subsequence
2. Subset Sum Problem
3. 0-1 Knapsack Problem

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

https://www.geeksforgeeks.org/dynamic-programming-set-4-longest-common-subsequence/
https://www.geeksforgeeks.org/dynamic-programming-subset-sum-problem/
https://www.geeksforgeeks.org/dynamic-programming-set-10-0-1-knapsack-problem/

4. All pair shortest path by Floyd-
Warshall

5. Shortest path by Dijkstra

7.4 Backtracking:

Sometimes we are facing the task of finding
an optical solution to a problem, there is no
applicable theory to help us to find the
optimum expect by resorting to exhaustive
search. So new systematic, exhaustive
technique is used known as ‘backtracking’.
In this technique a partial solution is
derived at each step and validity of partial
solution is checked and if incorrect we
backtrack and repair the solution.

Examples:
Chess, 8 queen problem, puzzle, tic –tac-toe
problem.
Consider the puzzle of how to place eight
queens on a chessboard, so that no queen
can attack another. One of the rule for
chess is that, a queen can take another
piece that lie on the same row, same
column, or the same diagonal as that of
queen.

ARRAYS

1. Is it possible to have negative index?

2. What is zero based addressing?

3. What is array initialization?

4. What is a string?

5. Differentiate between gets () and scanf
() using %s conversion specification?

6. How to initialize a character array?

7. What is a subscripted variable?

8. What are the characteristics of arrays in
C?

9. What is the allowed data type for
subscript?

10. Why is it necessary to give the size of an
array in an array declaration?

11. How to get the size of an array in a
program?
int a[10];
print f(“%d\n”, size of (a)/size of

(a[0]));

12. When does the compiler not implicitly
generate the address of the first
element of an array?

13. Does the following code work? Justify.
const int n = 10; int x[n];

14. What is the output of the program?
Main ()
{
int a[] = {0, 0×4, 4, 9};
int i = 2;
print f(“%d %d”, a[i], i[a]);
}

15. #define void int
int i = 300;
void main ()
{
int i = 200;
{
int i = 100;
print f(“%d”, i);
}
print f(“%d”, i);
}
What is the output of the above
program?

16. How many bytes of memory will the
following arrays need?

(a) char s[80];/* 80*/
(b) char s[80][10];/* 800*/
(c) int d[10];/*10* size of(int)*/
(d) float d[10][5];/*50*size of(float)*/

17. What is the output of the program?
main ()
{
int i, j;
int mat [3] [3] = {1, 2, 3, 4, 5, 6, 7, 8, 9};

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

for (i=2; i>= 0; i --)
for (j=2; j>=0; j--)
print f(“%d”, *(*(mat + j) + i));
}

18. What is the output of the program?
#include <stdio.h>
main ()
{
char s1 [] = “Ramco”;
char s2 [] = “Systems”;
s1 = s2;
print f(“%s”, s1);
}

19. What is the output of the program?
#include <stdio.h>
main ()
{
int a[10];
printf(“%d”, ((a + 9) + (a + 1)));
}

20. What is the output of the program?
#include <stdio.h>
main ()
{
char numbers [5] [6] = {“zero”, “one”,
“two”, “three”, “four”};
printf(“%s is %c”, & numbers [4] [0],
numbers [0] [0]); }

21. Write a program to reverse a string
using theoperator
#include <stdio.h>
int main ()
{
char s[20];
void revstr (char *);
print f(“Enter the string to be
reversed\n”);
scanf (“%s”, s);
revstr (s);
printf (“Reverse string is %s \n”, s);
return 0;
}
void revstr (char *s)
{
int length = strlen (s);
int i, j;
if (length > 0)
for (i =0, j = length -1; i < j; i ++, j --)
s[i] ^ = s[j], s[j] ^ = s [i], s[i] ^ =s[j];
}

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

DATA STRUCTURES
Topics Page No

1. PROGRAMMING 75

2. ARRAYS 99

3. STACKS & QUEUES 104

4. LINKED LIST 109

5. TREES 111

6. GRAPHS 127

7. HASHING 132

ALGORITHMS
Topics Page No

1. ALGORITHM ANALYSIS AND ASYMPTOTIC NOTATIONS 136

2. DIVIDE & CONQUER 152

3. GREEDY METHOD 158

4. DYNAMIC PROGRAMMING 170

5. P & NP CONCEPTS 176

6. MISCELLANEOUS TOPICS 179

GATE QUESTIONS

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.1 The value of j at the end of the
execution of the following C
program
int incr (int i){

static int count = 0;
count = count + i;
return (count);

}
main () {
int i, j;
for (i = 0; i <=4; i++)
j= incr (i);

}
is
a) 10 b) 4
c) 6 d) 7

 [GATE -2000]

Q.2 The most approximate matching for
the following pairs
List-I
X: m = malloc (5); m = NULL;
Y: free (n); n->value =5;
Z: char *p; *p= 'a';
List-II
1: using dangling pointers
2: using uninitialized pointers
3: lost memory
Codes:
a) X―1, Y― 3, Z― 2
b) X— 2, Y — 1, Z―3
c) X— 3, Y— 2, Z―1
d) X — 3, Y— 1, Z ―2

 [GATE- 2000]

Q.3 The following C declarations
struct node {

int i:
float j;

};
struct node * s[10];

Define s to be -
a) An array, each element of which
is a pointer to a structure of type
node

b) A structure of 2 fields, each field
being a pointer to an array of 10
elements
c) A structure of 3 fields: an integer,
a float, and an array of 10 elements
d)An array, each element of which is
a structure of type node

 [GATE -2000]

Q.4 What is printed by the print
statements in the program P1
assuming call by reference
parameter passing?
Program P1 () {

x = 10;
y = 3;
func1 (y, x, x);
print x;
print y;

}
func1 (x, y, z) {

y =y+4;
z = x + y +z;

}
a) 10, 3 b) 31, 3
c) 27, 7 d) None of these

[GATE -2001]

Q.5 In the C language
a) At most one activation record

exists between the current
activation record and the
activation record for the main

b) The number of activation
records between the current
activation record and the
activation record for the main
depends on the actual function
calling sequence

c) The visibility of global variables
depends on the actual function
calling sequence

d) Recursion requires the
activation record for the
recursive function to be saved on

GATE QUESTIONS(PROGRAMMING)

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

a different stack before the
recursive function can be cal led

 [GATE -2002]

Q.6 The results returned by function
under value-result and reference
parameter passing conventions
a) Do not differ
b) Differ in the presence of loops
c) Differ in all cases
d) May differ in the presence of

exception
 [GATE- 2002]

Q.7 Assume the following C variable
declaration
int * A[10], B[10][10];
Of the following expressions which
will not give compile time errors if
used as left hand sides of
assignment statements in a C
program?
I. A [2]
II. A[2][3]
III. B[1]
IV. B [2][3]
a) I, II, and IV only
b) II, III, and IV only
c) II and IV only
d) IV only

 [GATE- 2003]

Q.8 Consider the C program shown
below:
include <stdio.h>
define print(x) printf ("%d", x)
int x;
void Q(int z); {

z +=x;
print (z);

}
void P(int *y) {

int x= *y+2;
Q(x);
*y = x-1;
print (x);

}
main (void) {

x = 5;

P (&x)
print (x);

}
The output of this program is
a) 12 7 6 b) 22 12 11
c) 14 6 6 d) 7 6 6

 [GATE 2003]

Q.9 In the following C program fragment
j, k, n and Two Log _ n are integer
variables, and A is an array of
integers. The variable n is initialized
to an integer ≥3 and Two Log _ n is
initialized to the value of

 22* log n  
for (k=3; k <=n; k++)

A[k] = 0;
for (k=2; k <= Two Log _ n; k++)

for (j=k+1; j <=n; j++)
A[j] = A[j] || (j % k);
for (j=3; j<=n; j++)

if (!A[j]) printf (“%d”, j);
The set of numbers printed by this
program fragment is
a) {m | m≤n, (∃i) [m = !1]}
b) {m | m≤n, (∃i) [m = i2]}
c) {m | m≤n, m is prime}
d) None

 [GATE -2003]

Q.10 Consider the following C function;
void swap {int a, int b){

int temp;
temp a;
a = b;
b = temp;

}
In order to exchange the values of
two variables x and y
a) Call swap (x, y)
b) Call swap (&x, &y)
c) Swap (x, y) cannot be used as it

does not return any value
d) Swap (x, y) cannot be used as the

parameters are passed by value
 [GATE -2004]

Q.11 The goal of structured programming
is to

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

a) Have well indented programs
b) Be able to infer the flow of

control from the compiled code
c) Be able to infer the flow of

control from the program text
d) Avoid the use of GOTO

statements
 [GATE -2004]

Q.12 Consider the following C-program
double foo (double);/* Line 1 */
int main 0 {

double da, db;
// input da
db = foo (da);

}
double foo (double a) {

return a;
}
The above code compiled without
any error or warning. If Line 1 is
deleted, the above code will show
a) No compile warning or error
b) Some compiler-warnings not

leading to unintended results
c) Some compiler-warnings due to

type-mismatch eventually
leading to unintended results

d) Compiler errors
 [GATE- 2005]

Q.13 Consider the following C- program:
void foo (int n, int sum) {

int k = 0, j = 0;
if (n==0) return;
k = n % 10; j =n/1O;
sum = sum + k;
foo (j, sum);
printf ("%d”, k);

}
int main () {

int a= 2048, sum = 0;
foo (a, sum);
printf ("%d\ n", sum);

}
What does the above program print?
a) 8, 4, 0, 2, 14 b) 8, 4, 0, 2, 0
c) 2, 0, 4, 8, 14 d) 2, 0, 4, 8, 0

 [GATE 2005]

Q.14 Which one of the following are
essential features of an object-
oriented programming language?
1. Abstraction and encapsulation
2. Strictly-typedness
3. Type-safe property coupled with

sub-type rule
4. Polymorphism in the presence of

inheritance
a) 1 and 2 b) 1 and 4
c) 1, 2 and 4 d) 1, 3 and .4

 [GATE 2005]

Q.15 A common property of logic
programming languages and
functional languages is
a) Both are procedural languages
b) Both are based on λ- calculus
c) Both are declarative
d) Both use Horn-clauses

 [GATE 2005]

Q.16 An Abstract Data Type (ADT) is
a) Same as an abstract class
b) A data type that cannot be

instantiated
c) A data type for which only the

operations defined on it can be
used, but none else

d) All of the above
 [GATE 2005]

Q.17 What does the following C-
statement declares?
int (*f) (int *);
a) A function that takes an integer

pointer as argument and returns
an integer

b) A function that takes an integer
as argument and returns an
integer pointer

c) A pointer to a function that takes
an integer pointer as argument
and returns an integer

d) A function that takes an integer
pointer as argument and returns
a function pointer

 [GATE 2005]

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.18 Consider this C code to swap two
integers and these five statements:
The code

S1: will generate a compilation error
S2: may generate a segmentation

fa.0 It at runtime depending on
 the arguments passed
S3: correctly implements the swap

procedure for all input pointers
referring to integers stored in
memory locations accessible to
the process

S4: implements the swap procedure
correctly for some but not all
valid input pointers

S5: may add or subtract integers and
pointers

a) S1 only b) S2 and S3
c) S2 and S4 d) S2 and S5

 [GATE 2006]

Q.19 Consider these two functions and
two statements S1 and S2

S1: The transformation from work1
to work2 is valid, i.e., for any
program state and input
arguments, work2 will compute
the same output and have the
same effect on program state as
work1

S2: lf the transformations applied to
work to get work2 will always
improve the performance (i.e.,.
reduce CPU time) of work2
compared to work1

a) S1 is false and S2 is false
b) S1 is false and S2 is true

c) S1 is true and S2 is false
d) S1 is true and S2 is true

[GATE -2006]

Q.20 Consider the following C-function in
which a[n] and b[m] are two sorted
integer arrays and c[n+m] be
another integer array.
void xyz (int a[], int b[] int c[]) {

int i, j, k;
i=j=k=0;
while ((i<n) && (j<m))
if (a[i] < b[j])

c[k++]= a[i++];
else

c[k ++] = b[j++];
}
Which of the following condition
hold(s) after the termination of the
while loop?
(i) j < m, k = n + j – 1, and a [n-1] <

b[j], if i = n
(ii) i < n, k = m + i-1, and b[m-1]

a[i], if j = m
a) only (i)
b) only (ii)
c) either (1) or (ii) but not Both
d) neither (i) nor (ii)

[GATE -2006]

Q.21 Consider the following C function:
int f (int n){

static int r = 0;
if (n <= 0) return 1;
if (n > 3){

r = n;
return f (n-2) + 2;

}
return f (n-1) + r;

}
What is the value of f (5)?
a) 5 b) 7
c) 9 d) 18

[GATE -2007]

Q.22 Which combination of the integer
variables x, y and z makes the
variable a get the value 4 in the
following expression?

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

a=(x>y)? ((x>z)? x: z): ((y> z)? y: z)
a) x = 3, y= 4, z = 2
b) x= 6, y =5 z =3
c) x =6, y=3,z = 5
d) x= 5, y = 4, z = 5

 [GATE- 2008]

Q.23 Choose the correct to fill ?1and ?2 so
that the program below prints an
input string in reverse order.
Assume that the input string is
terminated by a newline character.
void reverse (void){

int c;
if (?1) reverse ();
?2;

}
main () {

printf (“Enter Text”);
printf (“/n”);
reverse (); printf (“/n”);

}
a) ?1 is (getchar ()!= ‘\n’)
b) ?1 is (c = getchar ())!= ‘\n’)

?2 isgetchar (c);?2 is getchar (c);
c) ?1 is (c !=’\n’)

?2 isputchar (c);
d) ?1 is (c = getchar ())!= ‘\n’)

?2 is putchar (c);
 [GATE -2008]

Q.24 What is printed by the following C
program?
int f (int x, int *py, int **ppz {

int y, z;
**ppz +=1;z = *ppz;
*py+=2; y =*py;
x +=3;
return x + y+ z;

}
void main ()
{

int c, *b, **a,
c=4; b=&c; a=&b;
printf (“%d", f(c, b, a));

}
a) 18 b) 19
c) 21 d) 22

[GATE -2008]

Q.25 Consider the program below:
include <studio.h>
int fun (int n, int*f_ p) {

int t, f;
if (n <=1) {
*f_p=1;
return 1;

}
t= fun (n―1,*f _ p);
f= t + *f _ p;
*f_ p + t;
return f;

}
int main {}
{

int x=15;
printf (“%d n”, fun (5, &x)};

return 0;
}
The value printed is
a) 6 b) 8
c) 14 d) 15

 [GATE- 2009]

Q.26 What does the following program
print?
include <stdio. h>
void f (int*p, int*q) {

p=q;
*p=2;

}
int i = 0, j = 1;
int main () {

f (&i, & j};
printf ("%d %d/n”, i, j);
return0 ;

}
a) 2 2 b) 2 1
c) 0 1 d) 0 2

[GATE-2010]

Q.27 The following program is to be
tested for statement coverage begin
if (a == b) {S1; exit; }
else if (c = = d) {S2;}
else {S3;exit;}
S4;
end

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

The test cases T1, T2, T3 and T4 given
below are expressed in terms of the
properties satisfied by the values of
variables a, b, c and d. The exact
values are not given.
T1: a, b, c and d are all equal
T2: a, b, c and d are all distinct
T3: a=b and c! =d
T4: a! = b and c=d
Which of the test suites given below
ensures coverage of statementsS1,
S2, S3 and S4?
a) T1, T2, T3 b) T2,T4

c) T3, T4 d) T1, T2, T4

 [GATE- 2010]

Q.28 What is the value printed by the
following C program?
#include < stdio.h>
int f(int *a, int n)
{
if (n<=0) return 0;
else if (*a %2= =0)

return *a +f(a + 1, n-1);
else

return *a - f(a+1, n-1);
}
int main ()
{

int a[] = {12, 7, 13, 4, 11 , 6};
printf("%d*, f(a, 6));
return 0;

}
a) -9 b) 5
c) 15 d) 19

 [GATE -2010]

Common Data for Questions 29 and 30
Consider the following recursive C function
that takes unsigned int foo (unsigned int, n,
unsigned int r)

{
if (n > 0) return (n%r + foo

(n/r, r));
else return 0;

}
Q.29 What is the return value of the

function foo, when it is called as foo
(513, 2)?

a) 9 b) 8
c) 5 d) 2

 [GATE -2011]

Q.30 What is the return value of the
function foo, when it is called as foo
(345, 10)?
a) 345 b) 12
c) 5 d)3

 [GATE -2011]

Q.31 What does the following fragment of
C-program print?
char c [] = “GATE 2011”
char *p = c;
printf ("%s", p+p[3]-p[1]);
a) GATE 2011 b) E2011
c) 2011 d) 011

 [GATE-2011]

Common Data for Questions 32 and 33
Consider the following C code segment

int a, b, c = 0;
void prtFun (void);
int main ()
{

 static int a = 1; /* line 1 */
 prtFun();
 a += 1;
 prtFun();
 printf ("\n %d %d " , a, b) ;

}

void prtFun (void)
{

 static int a = 2; /* line 2 */
 int b = 1;
 a += ++b;
 printf (" \n %d %d " , a, b);

}

Q.32 What output will be generated by
the given code segment?
a)3 1 b)4 2

 4 1 6 1
 4 2 6 1

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

c)4 2 d)3 1
 6 2 5 2
 2 0 5 2

[GATE-2012]

Q.33 What output will be generated by
the given code segment if -
Line 1 is replaced by auto int a = 1;
Line 2 is replaced by register int a=
2?
a)3 1 b)4 2

 4 1 6 1
 4 2 6 1

c)4 2 d)4 2
 6 2 4 2
 2 0 2 0

 [GATE-2012]

Q.34 Consider the program given below,
in a block-structured pseudo-
language with lexical scoping an
nesting of procedures permitted.
Program main;
Var ………
Procedure A1;

Var …
Call A2 ;
End A1

Procedure A2;
Var ………

Procedure A21;
Var …

Call A1;
End A2
Call A21;
End A2
Call A1;

End main.
Consider the calling chain:
Main → A1 → A2 → A21 → A1
The correct set of activation records
along with their access links is given
by

a)

b)

c)

d)
 [GATE-2012]

Q.35 What is the return value of (p , p) , if
the value of p is initialized to 5
before the call? Note that the first
parameter is passed by reference,
whereas the second parameter is
passed by value.
int f(int &x, int c){

c = c – 1;
int (c = = 0) return 1 ;
x = x + 1;
return f(x, c) * x :

}
a) 3024 b) 6561
c) 55440 d) 161051

[GATE-2013]

Q.36 Consider the C function given below
int f(int j)
{
static int i = 50;

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

int k;
if (i == j)
{
printf(“something”);
k = f(i);
return 0;
}
else return 0;
}
Which one of the following is TRUE?
a) The function returns 0 for all values

of j.
b) The function prints the string

something for all values of j.
c) The function returns 0 when

j=50.
d) The function will exhaust the

runtime stack or run into an
infinite loop when j = 50

 [GATE -2014]

Q.37 Consider the following pseudo code.
What is the total number of
multiplications to be performed?
D = 2
for i = 1 to n do

 for j = i to n do
 for k = j + 1 to n do

D = D *3;
a) Half of the product of 3

consecutive integers
b) One third of the product of 3

consecutive integers
c) One-sixth of the product of 3

consecutive integers
d) None of the above

 [GATE -2014]

Q.38 Consider the function func shown
below:
int func(int num) {
int count = 0;
while (num) {
count++;
num>>= 1;
}
return (count);
}

The value returned by func(435) is
………………

 [GATE -2014]

Q.39 Suppose n and p are unsigned int
variables in a C program. We wish to
set p to nC3.If n is large, which one
of the following statements is most
likely to set p correctly?
a) p = n * (n-1) * (n-2) / 6;
b) p = n * (n-1) / 2 * (n-2) / 3;
c) p = n * (n-1) / 3 * (n-2) / 2;
d) p = n * (n-1) * (n-2) / 6.0;

 [GATE -2014]

Q.40 Consider the following function
double f (double x)
{
if (abs(x*x – 3) < 0.01) return x;
else return f (x/2+1.5/x);
}
Give a value q (to 2 decimal) such
that f(q) will return q: ………………..

 [GATE- 2014]

Q.41 Consider the following program in C
language
#include<stdio.h>

void main()
{

 int i;
 int *pi = &i;
 scanf (“%d”,pi);
 printf (“%d\n”,i+5);

}
Which of the following is true?
a) Compilation fails
b) Execution results in a run time

error
c) On execution, the value printed

is 5 more than the address of
variable i

d) On execution, the value printed
is 5 more than the integer value
entered.

 [GATE -2014]

Q.42 Consider the following C function.
int fun (int n)

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

{
int x = 1, k;
 if (n==1)
return x;
for (k = 1; k < n; ++k)
x= x+fun(k) * fun (n-k) ;
return x;

}
The return value of fun (5) is _______

 [GATE- 2015]

Q.43 Consider the following recursive C
function.
void get (int n) {

if (n<1) return;
get (n-1);
get(n- 3) ;
print f (" %d",n) ;

}
If get (6) function is being called in
main () then how many times will
the get () function be invoked before
returning to the main ()?
a) 15 b) 25
c) 35 d) 45

 [GATE -2015]

Q.44 Consider the following C program
#inclue <stdio.h>
int main()
{
int i, j, k=0;
j = 2*3 / 4 + 2.0 / 5 + 8 / 5;
k - = --j;
for (i=0; i<5; i++)
{

switch(i+k)
{
case1:
case 2 : printf("\ n %d", i+k) ;
case 3: printf("\ n %d", i+k);
default : printf("\ n%d", i+k) ;
}

}
return 0;
}
The number of times printf
statement is executed is _________

 [GATE -2015]

Q.45 Consider the following C program.
#include <stdio.h>
int f1(void) ;
int f2(void) ;
int f3(void);
int x = 10;
int main()
{

int x = 1;
x += f1() + f2() + f3() + f2();
printf("%d", x) ;
return 0;

}
int f1()
{

int x = 25;
x++ ;
return x;

}
int f2()
{

static int x = 50;
x++ ;
return x;

}
int f3()
{

x*=10;
return x ;

}
 The output of the program is________

 [GATE- 2015]

Q.46 Consider the following function
written the C programming
language.
void foo (char *a)
 {

if (*a && *a != ' ')
{

 foo(a+1);
 putchar (*a) ;

}
}
The output of the above function on
input “ABCD EFGH” is
a) ABCD EFGH b) ABCD
c) HGFE DCBA d) DCBA

 [GATE -2015]

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.47 Consider the following C program
segment.
#include<stdio.h>
int main()
{

char s1[7]=”1234”, *p;
p = s1+2;
*p = ‘0’;
printf(“%s”s1);

}
What will be printed by the
program?
a) 12 b) 120400
c) 1204 d) 1034

 [GATE- 2015]

Q.48 Consider the following C program
#include <stdio.h>
 int main ()
{
static int a[] = { 10, 20, 30 40, 50} ;
static int *p[] ={ a, a+3, a+4, a+1,
a+2} ;
int **ptr = p;
ptr++ ;
printf ("%d%d", ptr - p, **ptr) ;
}
The output of the program is

 [GATE -2015]

Q.49 Consider the following C program.
void f(int, short);
void main()
{
int i = 100;
short s = 12;
short *p = &s;
__________ ; // call to f()
}
Which one of the following
expressions, when placed in the
blank above, will NOT result in a
type checking error?
a) f(s,*s) b) i = f(i,s)
c) f(i,*s) d) f(i,*p)

 [GATE- 2016]

Q.50 Consider the following C program.

#include<stdio.h>
void mystery(int *ptra, int *ptrb)
{
int *temp;
temp = ptrb;
ptrb = ptra;
ptra = temp;
}
int main()
{
int a = 2016, b = 0, c = 4, d = 42;
mystery (&a, &b);
if (a < c)
mystery(&c, &a);
mystery(&a, &d);
printf(“%d\n”, a);
}
The output of the program is
_________.

 [GATE -2016]

Q.51 The following function computes the
maximum value contained in an
integer array p[]of size n (n >= 1).
int max(int *p, int n)
{
int a = 0, b = n – 1;
while (_______)
{
if (p[a] <= p[b])

{ a = a+1; }
else

{ b = b-1; }
}
return p[a];
}
The missing loop condition is
a) a != n b) b != 0
c) b > (a + 1) d) b != a

 [GATE -2016]

Q.52 What will be the output of the
following pseudo-code when
parameters are passed by reference
and dynamic scoping is assumed?
a = 3;
void n(x)
{
x = x * a;

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

print(x);
}
void m(y)
{
a = 1;
a = y - a;
n(a);
print(a);
}
void main()
{
m(a);
}
a) 6, 2 b) 6, 6
c) 4, 2 d) 4, 4

 [GATE -2016]

Q.53 The value printed by the following
program is_______.
void f(int* p, int m)
{
m = m + 5;
*p = *p + m;
return;
}
void main()
{
int i=5, j=10;
f(&i, j);
printf("%d", i+j);
}

 [GATE- 2016]

Q.54 The following function computes XY
for positive integers X and Y.
int exp(int X, int Y)
{
int res = 1, a = X, b = Y;
while (b != 0)
{

if (b%2 == 0)
{

a = a*a;
b = b/2;

}
else
{

res = res*a;
b = b-1;

}
}
return res;
}
Which one of the following
conditions is TRUE before every
iteration of the loop?
a) XY = ab

b) (res∗a)Y = (res∗X)b

c) XY = res∗ab

d) XY = (res∗a)b

 [GATE- 2016]

Q.55 Consider the following program:
int f(int *p, int n)
{
if (n <= 1) return 0;
else
return max(f(p+1, n–1), p[0] – p[1]);
}
int main()
{
int a[] = {3, 5, 2, 6, 4};
printf ("%d", f(a, 5));
}
Note: max(x, y) returns the
maximum of x and y.
The value printed by this program
is___________.

 [GATE -2016]

Q.56 Consider the C struct defined below:
Struct data {

 int marks [100];
char grade;
int cnumber;

};
Struct data student;
The base address of student is
available in register R1. The field
student, grade can be accessed
efficiently using
a) Post- increment addressing

mode (R1)
b) Pre– decrement addressing

mode.-(R1)
c) Register direct addressing mode

E1.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

d) Index addressing mode X (RI).
Where X is an offset represented
in 2’s complement 16-bit
representation.

 [GATE -2017]

Q.57 Consider the following C code:
#include < stdio. h >
int* assignval (int *x, int val)
{

*x = val;
 return x;

}
void main () {
int *x= malloc (size of (int));
If (NULL= = x) return;
x= assignval (x, 0);
if (x) {
x= (int*) malloc (sizeof (int));

if (NULL= = x) return;
x= assignval (x, 10);

}
 printf (“%d\n”, *x);
 free (x);
}
The code suffers from which one of
the following problems:
a) Complier error as the return of

malloc is not typecast
appropriately

b) Compiler error because the
comparison should be made as
x= = NULL and not as shown

c) complies successfully but
execution may result in dangling
pointer

d) compiles successfully but
execution may result in memory
leak

 [GATE -2017]

Q.58 The output of executing the
following C program is ____
 #include <stdio h>
 int total (int v) {
 static int count = 0;
 while (v) {

 count + = v & 1;
 v >>=1;

 }
 return count;

}
void main () {
static int x= 0;
 int i = 5;
 for (; i > 0; i - -) {
 x=x+ total (i);

 }
 printf (“%d\n”, x);
}

 [GATE -2017]

Q.59 Consider the C functions foo and bar
given below
int foo(int val)
{

int x= 0;
while (val > 0)
{
 x = x+ foo (val- -);
}
 return val;

}
int bar (int val) {

int x= 0;
while (val > 0)
{
x = x+ bar (val-1);
}
return val;

}
Invocations of foo (3) and bar (3)
will result in:
a) Return of 6 and 6 respectively.
b) Infinite loop and abnormal

termination respectively
c) Abnormal termination and

infinite loop respectively.
d) Both terminating abnormally.

 [GATE -2017]

Q.60 Consider the following C program.
 # include <stdio.h>
 # include <string.h>
 void printlength (char *s, char *t) {
 unsigned int c= 0;
int len=((strlen(s) - strlen(t)) > c)
strlen(s) : strelen(t);

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

printf (“%d\n” , len);
}
void main () {

 char *x= “abc”;
char *y= “defgh”;
printlength (x, y);

recall that strlen is defined in sting,
h as returning a value of type size_ t,
which is an unsigned int. The output
of the program is ___.

 [GATE -2017]

Q.61 Consider the following two
functions:
Void fun1 (int n{ Void fun2 (int n{
If (n= = 0) return; If(n==0) return;
Printf(“%d”,n) Printf(“%d”,n)
Fun2(n-2); fun 1(++n);
Printf(“%d”,n); printf(“%d”,n);
} }
The output printed when fun 1 (50
is called is
a) 53423122233445
b) 53423120112233
c) 53423122132435
d) 53423120213243

 [GATE -2017]

Q.62 Match the following :
List-I
P) static char var;
Q) m= malloc(10);m= NULL;
R) char*ptr [10];
S) register intvar1;
List-II
i) Sequence of memory locations to

store addresses
ii) A variable located in data section

of memory
iii) Request to allocate a CPU

register to store data
iv) A lost memory which cannot be

freed
a) P→(ii),Q→(iv),R→(i),S→(iii)
b) P→(ii),Q→(i),R→(iv),S→(iii)
c) P→(ii),Q→(iv),R→(iii),S→(i)
d) P→(iii),Q→(iv),R→(i),S→(ii)

 [GATE -2017]

Q.63 Consider the following function
implemented in C:
Void printxy(ints, inty)
{

 int*ptr;
 x=0
 ptr =&x;
 y=*ptr;
*ptr=1;
 printf(“%d,%d”,x,y);

 }
The output of invoking
printxy(1,1)is
a) 0,0 b) 0,1
c) 1,0 d)1,1

 [GATE -2017]

Q.64 Consider the C program fragment
below which is meant to divide x by
y using repeated subtractions . The
variables x,y,q are all unsigned int.
while (r > = y)
{
 r = r-y ;
 q = q+1;

 }
Which of the following conditions on
the variables x,y,q and r before the
execution of the fragement will
ensure that the loop terminates in a
state satisfying the condition x=
=(y× q + r)?
a) (q= =r) & &(r = =0)
b) (x > 0) & &(r = =x) & & (y > 0)
c) (q= = 0) & &(r= =x)& & (y>0)
d) (q= =0) & & (y> 0)

 [GATE -2017]

Q.65 Consider the following C program
#include < stidio. H >

 Int main()
{ int m = 10;
 int n,n1;
 n1= + + m;

 n- -;
 n- =n1;
 printf(“%d”,n)’
 return 0;

 }

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

The output of the program is ___.
 [GATE -2017]

Q.66 Consider the following C program:
#include <stdio.h>
int counter = 0;

int calc(int a, int b) {
 int c;
 counter++;
 if (b == 3)
return (a * a * a);
else {

 c = calc(a, b / 3);
 return (c * c * c);

 }
}
int main() {
 calc(4, 81);
 printf("%d", counter);
}
The output of this program is ________ .
a) 5 b) 4
c) 3 d) None of these

 [GATE -2018]

Q.67 Consider the following program
written in pseudo-code. Assume that
x and y are integers.
Count (x, y) {

 if (y !=1) {
 if (x !=1) {

 print("*");
 Count (x/2, y);

 }
 else {

 y=y-1;
 Count (1024, y);

 }
 }

}
The number of times that the print
statement is executed by the call
Count (1024, 1024) is _______ .
(A) 10230
(B) 10
(C) 1023
(D) 23010

[GATE -2018]

Q.68 Consider the following C program:

#include <stdio.h>
void fun1(char *s1, char *s2) {
 char *temp;
 temp = s1;
 s1 = s2;
 s2 = temp;
}
void fun2(char **s1, char **s2) {
 char *temp;
 temp = *s1;
*s1 = *s2;
*s2 = temp;

}
int main() {
 char *str1 = "Hi", *str2 = "Bye";
 fun1(str1, str2);
 printf("%s %s", str1, str2);
 fun2(&str1, &str2);
 printf("%s %s", str1, str2);
 return 0;
}
The output of the program above is

a) Hi Bye Bye Hi
b) Hi Bye Hi Bye
c) Bye Hi Hi Bye
d) Bye Hi Bye Hi

[GATE -2018]

Q.69 Consider the following C code.
Assume that unsigned long int type
length is 64 bits.
unsigned long int fun(unsigned long
int n) {
 unsigned long int i, j, sum = 0;

 for(i = n; i > 1; i = i/2) j++;
 for(; j > 1; j = j/2) sum++;
 return sum;

}
The value returned when we call fun
with the input 240 is
a) 4

b) 5

c) 6

d) 40

[GATE -2018]

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q. 1 (a)
Count is static variable in incr().
Statement static int count = 0 will
assign count to 0 only in first call.
Other calls to this function will take
the old values of count.
Count becomes 0 after the function
call incr(0)
Count becomes 1 after the function
call incr(1)
Count becomes 3 after the function
call incr(2)
Count becomes 6 after the function
call incr(3)
Count becomes 10 after the function
call incr(4)

Q. 2 (d)
X corresponds to a lost memory
thus, X-3
Y corresponds to usage of dangling
pointers thus, Y-1
Z corresponds to usage of
uninitialized pointers thus, Z-2

Q. 3 (a)

In the given declaration s is an array
denoted by s[10], containing 10
elements which are pointers
indicated by the symbol, *, to
structure of type node as defined by
structure node statement.

Q. 4 (b)
Let the formal parameters be X, Y, Z
to avoid confusion.
func1 (X, Y, Z)
{

Y = Y + 4;
Z = X + Y + Z;

}
y and X refer same location. x, Y, Z
refer to same location. So the
changes in func1 reflects in x, y, so x
= 10 and y = 3 is printed.

Q. 5 (a)
Activation record or frame, having a
collection of fields, gives the
information required by a single
execution of a procedure that is
managed by a contiguous block of
storage. Such type of storage are
used by languages like C and Pascal

1 2 3 4 5 6 7 8 9 10 11 12 13 14

(a) (d) (a) (b) (a) (b) (c) (a) (b) (d) (c) (c) (d) (b)

15 16 17 18 19 20 21 22 23 24 25 26 27 28

(c) (c) (c) (b) (d) (c) (d) (a) (d) (b) (b) (d) (d) (c)

29 30 31 32 33 34 35 36 37 38 39 40 41 42

(d) (b) (c) (c) (d) (d) (b) (d) (c) 9 (b) 1.73 (d) 51

43 44 45 46 47 48 49 50 51 52 53 54 55 56

(b) 10 230 (d) 1204 140 (d) 2016 (d) (d) 30 (c) 3 (d)

57 58 59 60 61 62 63 64 65 66 67 68 69

(a) 23 (c) 3 (c) (a) (c) (c) 0 (b) (c) (a) (b)

ANSWER KEY:

EXPLANATIONS

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

so when a procedure is called, it is
necessary to push the activation
record of the procedure on a run
time stack and when the control is
returned back to the calling
procedure the activation record is
popped up from the stack.

Q. 6 (b)
The results returned by the
functions under value-result and
reference parameter passing
conventions differ in the presence of
loops.

Q. 7 (c)
From the given declaration it is clear
that int* A [10], is an array of 10
pointers.
A[2][3] can be used on the left hand
side of assignment when A[2] can
hold the pointer of an integer array.
Thus, B [2] [3] can be used as left
hand side as it gives the element of
second row in the third column.

Q. 8 (a)
From the code it is found that
x = 5
x = * y + 2 = 5 + 2 = 7
Q(x)
z = 7
z = z + x = 12
print (z) = 12
*y = x - 1 = 6
Print(x) = 7
Print(x) = 6

Q. 9 (b)
If (! A[j]) condition was as follows (!
A[j] == 0)
Then, it prints a nonzero value in
the array {m | m < n, (i) [m= i2]}

Q.10 (d)
From the given code it is
determined that there will be no
interchange in the values of x and y,
since the parameters are passed by

value, when the function swap (x, y)
is called. As the scope of a and b lies
within the function but not in the
main program so there is
interchanging in the formal
parameters a and b but no exchange
in actual parameters x and y will
take place. It is only possible to
exchange the values of x and y, if
they are called by reference.

Q.11 (c)
Structured programming refers to
programming in which control is
passed from one instruction to
another in a sequential order. Some
of the examples of this type of
programming are C and Pascal. This
type of programming thus, has a
goal to be able to infer the flow of
control from the program text which
means the user can execute the
program according to his need. In
structure programming various
control structures such as switch-
case, if-then-else, while, etc. allows a
programmer to decode the flow of
the program easily.

Q. 12 (c)
Whenever the a function's data type
is not declared in the program, the
default declaration is taken into,
consideration. By default, the function
foo in this is assumed to be of in
type then also it returns a double
type of value. This situation will
generate compiler warning due to
this mismatch leading to unintended
results.

Q. 13 (d)
From the given code it is found that
foo is a recursive function and when
the function foo(a, sum) is called
where a=2048 and sum=0 as per
given conditions. Then, the
execution of the function takes in
the following manner

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

 For n = 2048
 k=2048% 10=foo (204, 8)

j= 2048/10 = 204
 therefore, sum = 0+8=8
 n = 204
 k = 204%10 = foo(20, 12)
 j=204/10=20 therefore,

sum=8+4=12
 n = 20
 k = 20% 10 = foo (2, 12)

j=20/10=2 therefore,
Sum =12+0 = 12

 n = 2
 k = 2% 10 = foo(0, 14)

y = 2/10 = 0 therefore,
sum = 12 + 2 = 14

 at this point function will be
terminated and the print sequence
will be 2, 0, 4, 8, 0 since, sum is the
local variable.

Q. 14 (b)
 Object Oriented Programming

(OOP) is a programming paradigm.
The language is object oriented as it
use objects. Objects are the data
structures that contain data fields
and methods together with their
interactions.

 The main features of the
Programming techniques 'are

 1. data abstraction
 2. encapsulation
 3. modularity
 4. polymorphism
 5. inheritance
 Therefore, the essential features are

given by statements (i) and (iv).

Q. 15 (c)
 Languages needs declaration of any

statement that we write before its
use thus, the common property of
both the languages is that both are
declarative.

Q. 16 (c)
 An abstract data type is a

mathematical model for a certain

class of data structures that have
similar behavior. An abstract data
type is indirectly defined by the
operations and mathematical
constraints thus, is a user defined
data type, not a system defined, that
can perform operations defined by it
on that data.

Q. 17 (c)
 A ‘*’ in the C statement indicates a

pointer. Thus, *f is a, pointer to a
function which takes argument as
(int*) thus an integer pointer and an
int in the start of the statement
indicates that the statement returns
an int value, i.e., an integer value, so
finally the given statement means
that a pointer to a function that
takes an integer pointer as an
argument returns an integer.

Q. 18 (b)
 For the given code only the

statements S2 and S3, are valid and
thus, are true. Since, the code may
generate a segmentation fault at
runtime depending on the arguments
passed as the arguments are passed
by reference and also the swap
procedure is correctly implemented
here.

Q. 19 (d)
 From the given code and statement

it can be concluded that the same
work is performed by both work1
and work2, hence the statement S1
is true. To prove statement S2 true
we consider work1 where, int x=a
[/+2] is computed twice and the
value returned by it is a[i+2]-1,
however in work2, the assignment
statement of variables £1 and t2
return f2-3 which implies that
computation is done once only thus,
S2 is also true.

In work 1 But in work 2
int x=a[i+2]; t, = i + 2

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

here a[j+2j is
computed twice

t2 = a[t1]

return a[i+2J-1 return t2 -3
so need for 2nd computation

Q. 20 (c)
In the while loop it is given that i<n
and j<m and also a[il<b[j]so for this
a[n-1]<b[j] thus, k=m+i-1 when i<n
This implies that 6[m-1]<=a[i]
Also, if 1<m then, due to the value of
k being equal to n+y-1 the condition
a[n-1]<b[j].

Q.21 (d)
We follow, the following steps to
obtain the value of f(5)
f(5)
r=5
f(3)+2 = 18
↑
f(2) + 5 =16:
↑
f(1) + 5 = 11
↑
f(0) + 5 = 6
↑
1

Q. 22 (a)
The operator “?:” in C is the ternary
operator which means that, if the
expression is exp1 ? exp2: exp3, so it
means, if exp1 is true then exp2 is
returned as the answer else exp3 is
the required answer.
So, in the given expression let us
consider x = 3, y = 4, Z = 2
Then, expression becomes a
= (3>4)?((3>2)?3:2):((4>2?4:2)
From this, we get that 3>4 is false so
we go for the else part of the
statement which is 4>2 and is true
thus/the answer is 4, the true part
of the statement.

Q. 23 (d)
?1 is ((c = getchar ())! ='\n')
?2 is putchar (c);

Because the operator '1=' has higher
priority than '=' Operator so
according to this = getchar () should
be contained in brackets and when
the string is reversed then the
function putchar (c) is used so that
the characters can be printed.

Q. 24 (b)
The program gets executed in the
following manner Graphical
Representation

Now, considering,
int y, z;
**ppy += 1; z = *ppz = 6
*py += 2; y = *py = 6
x = 4 + 3 = 7
return x + y + z;
and
c = 4; b = &c; a = &b;
print f ("%d", f(c, b, a));
From the code,
The output is printed as 6+6+7=19.

Q. 25 (b)
As x = 15
fun (5, &x) and let &x = 200
then fun (5, 200) so, then t = 5f = 5 +
3 *f _ p = 5
this will return 8
when fun(4,200), then t = 3f= 3+2 *f
_ p = 3
this will return 5
when fun(3,200) then t =2f=2+1*f_ p
=2
this will return 3 .
for fun(2,200) t = 1 f =1 +-1*f _ p = 1
this will return 2
last for fun (1,200)*f _ p=1
will return 1
So fun(5, &x) returns 8 and this is
the answer that will be printed.

Q. 26 (d)
In the given program it begins from
main i & j globally initialized by 0

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

and 1 so when we call function f(&i,
&j) the address of i and j passed,
when p = q and *p = 2 means *q = 2,
so value of *q is passed 2 and value
of *q return to j & the value of i and j
as 2, so, print f ("%d %d", i, j) give
output (0, 2).

Q. 27 (d)
In a given program we take the test
cases and apply.
First take T1, if all value equal means.
a = b = c = d
So, due to T1, a = b condition
satisfied and S1 and S4 executed.
So, from T2 when all a, b, c, d distinct.
S1, S2 not execute, S3 execute.
from T3 when a = b then, S1 execute
but c = d so, S2 not execute but S3
and S4 execute but we have no need
of T3 because we get all result from
above two.
By using T4. If a! = b and c = d.
So, S1 not execute and S2 and S4
execute so all of S1 , S2, S3, S4 execute
and covered by T1, T2 and T4.

Q.28 (c)
The numbers given are 12, 7, 13, 4,
11, 6 Now, just move with the steps
of the program in the sequence of
the numbers are given. The
sequence, in which numbers are
entered is

12 7
13 4
11 6

Now, as per the program, we get,
(12 (7 - (13 - (4 + (11- (6 + 0)))))
=15.

Q.29 (d)
foo (513, 2)
= (513%2) + foo (513/2, 2)
=1 + foo (256, 2)
= 1 + 256%2 + foo (128, 2)
= 1 + 0+128%2 + foo (64, 2)
= 1 + 0+0 + foo (32, 2)
= 1 + 0 + 0 + 32%2 + foo (16, 2)

= 1 + 0+0+ 0+16%2+foo (8, 2)
= 1 + 0 + 0^r0 + 0 + 8%2 + foo (4, 2)
= 1+0+0+0+0+0+4%2+foo (2, 2)
= 1+0+0+0+0+0+0+1 %2 + foo (1, 2)
=1+o+0+0+0+0+0+01 %2+ foo(0, 2)
= 1+ 0+0+0 + 0 + 0 + 0 + 0 +1 + 0 = 2

Q. 30 (b)
foo (345, 10)
= 345%10 + foo (345/10, 10)
= 5 + foo (34, 10)
= 5 + 4 + foo (3910)
= 5 + 4 + 3= 12

Q. 31 (c)
GATE 2011
Suppose p base address of string.
p[3] is ‘E’, p[1] is ‘A’
p + p [3] – p [1] = BA+’E’-‘A’ = BA+4
print f ("%s",BA+4) is 2011

Q. 32 (c)
In main a is initialized with 1 and it
is a static variable.
Static variable will not change its
value in any calling of function.In
first call of ptrFun (void) function a
is initialized with 2 as a static
variable and b is normal auto type
variable b = 1
a + = + + b
a = a + 2
a=4
Now 4, 2 will be printed.
Now, CPU control backs to main
function
a = a +1
a = 1 + 1
a = 2 .
Again ptrFun (veid) function is
called.
At this time a will not be initialized
but b will be intialized.
Previously a= 4 and at this time b= 1
a + = + + b;
a + = 2,
a = 6;
Now, 6, 2 will be printed.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

and CPU control returns back to
main function a and b will be
printed as 2, 0.

Q. 33 (d)
Auto int a = 1 is same as int a = 1
Register int a = 2 is same as int a = 2
When we call ptrFun (void) function
then a is initialized with 2 and b
with 1.
a + = ++ b;
(pre increment of b will give
incremented value of b)
or a + = 2;
a = a + 2;
a = 2+2 = 4;
Now, a and b are printed as 4, 2.
Now control returns back to main
function a is incremented by 1 and
maiin a is initialized with1.
So, now
a = a +1
a=1+1
a = 2
Again ptrFun (void) function is
called then again a is intialized with
2 and b with 1 .
a + = + + b;
a + = 2;
a = 4;
and this function prints a, b as 4, 2.
Now, control of CPU returns back to
main. In main print the value of a
and b. In main a - T and b is not
initialized and b is a global or
external variable, so by default it is
zero.
4 2
4 2
2 0

Q. 34 (d)
Link to activation record of closest
lexically enclosing block in program
text. It depends on the static
program text.

Main  A1  A2A21 A1

Q. 35 (b)
Return value f (p , p) if the value of
p is initialized to 5 before the call.
Since, reference of p is passed as ‘x’
Thus, any change in value of x in f
would be reflected globally.
The recursion can be broken down
as

5 5

f (x,c)
6 4

x*f (x,c)
7 3

x*f (x,c)
8 2

x*f (x,c)
9 1

x*f (x,c)

1 (∵ c = 0 in this call)

∴ Answer is = 4 * * *x x x x
The final value of x = 9
94 = 6561 i.e., Option (b)

Q. 36 (d)
For any value of ‘j’ other than 50 the
function will return 0, for j=50, then
condition (i==j) will be true, it will
print “something” and function will
be called recursively with same
value till the run time stack
overflows.

Q.37 (c)
For i=1, the multiplication statement
is executed (n-1)+(n-2)+..2+ 1 times.
For i = 2, the statement is executed
(n-2) + (n-3) + .. 2 + 1 times……….
For i = n-1, the statement is
executed once.
For i=n, the statement is not
executed at all

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

So the statement executes for
[(n-1) + (n-2) + .. 2 + 1] + [(n-2) + (n-
3) + .. 2 + 1] + … + 1 + 0 times.
It can be written as
S = [n*(n-1)/2 + (n-1)*(n-2)/2 + …..
+ 1]
We know that Series S1 = n2 + (n-
1)2 + .. 12.
The sum of this series is
n*(n+1)*(2n+1)/6
S1– 2S = n + (n-1) + … 1 = n*(n+1)/2
2S = n*(n+1)*(2n+1)/6 – n*(n+1)/2
S = n*(n+1)*(n-1)/6

Q.38 (9)
Initially num = 110110011, count= 0
count = 1; num = 101100110 after
1st right shift
count =2; num = 011001100 after
2nd right shift
:
:
Count = 9; num = 000000000 after
9th right shift.
After nine right shifts, num = 0; and
while loop terminates count = 9 will
be returned

Q.39 (b)
P = n*(n-1)*(n-2)/6
It we multiply n, (n-1), (n-2) at once,
it might go beyond the range of
unsigned integer
(resulting overflow). So options (A)
and (D) are cannot be the answer. If
n is even or odd n×(n-1)/2 will
always result in integer value (no
possibility of truncation, so more
accuracy) where as incase of n*(n-
1)/3, its not certain to get integer
always truncation possible, so less
accuracy).

Q.40 (1.73)
If condition given in function
definition should be ‘TRUE’, for f (q)
to return value q .
The condition is as follows:
if (abs(x*x −3)<0.01) return x;

The above condition will be true
when x2-3 is almost 0 so x=1.73

Q.41 (d)
pi contains the address of i. So
scanf("%d",pi) places the value
entered in console into variable i. So
printf("%d\n",i+5), prints 5 more
than the value entered in console.

Q.42 (51)
fun(5)= 1+ fun(1)*fun(4) +
fun(2)*fun(3) + fun(3) * fun(2) +
fun(4)* fun(1)
Similarly calculate fun(1), fun(2),
fun(3)
fun(1) = 1, fun(2) =2, fun(3) = 5,
fun(4) = 15
Finally fun(5) = 51

Q.43 (b)

Q.44 (10)
The value of j with the expression j =
2*3 / 4 + 2.0 / 5 + 8 / 5 will be 2.
k -= --j; makes k value as -1.
For i=0: i+k will be -1, default block
gets executed. So printfcount=1
For i=1: i+kwill be 0, default block
gets executed. So printfcount=2
For i=2: i+k will be 1, all blocks are
executed. So printfcount=5
For i=3: i+k will be 2, all blocks are
executed. So printfcount=8
For i=4: i+k will be 3, case 3 and
default blocks are executed. So print
f count=10.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.45 (230)
x = x+ f1() + f2() + f3() + f2();
f1() returns 26, f2() returns 51, f3()
returns 100.
Second call to f2() returns 52 since x
is static variable.
So x= 1+26+51+100+52=230

Q.46 (d)
The program prints all characters
before space in reverse order i.e.
DCBA because printing is after the
recursive call.

Q.47 (1204)
P=S1+2; which means p holds the
address of 3rd character
*p=’0’; the 3rd character becomes 0
So the string printed is 1204

Q.48 (140)
The value of ptr-p is 1 and value of
**ptr is 40.

Q.49 (d)
Since function prototype is void
f(int, short) i.e., f is accepting,
arguments int, short and its return
type is void. So f(i, *p) is correct
answer.

Q.50 (2016)
Whatever modifications are
performed in mystery () function,
those modifications are not
reflected in main () function so it
will print 2016.

Q.51 (d)
While(b! = a) is the condition
because, a is moving from starting of
array and b is moving from end of
array. When they both are equal we
stop the process.

Q.52 (d)

Q.53 (30)
Parameter i is passed by reference
and j is passed by value. So in the
function f, value of m is 15 (but j is

not effected). Value of I is 5+15=20
(*p is nothing but i). In main, i+j
becomes 20+10=30

Q.54 (c)
This can be verified by taking values
for X and Y.

Q.55 (3)

3 5 2 6 4
2000 2002 2004 2006 2008
f(2000,5) :return max(f(2002,4), -2)
f(2002,4) : return max(f(2004,3), 3)
f(2004,3): return max(f(2006,2), -4)
f(2006,2): return max(f(2008,1),2)
f(2008,1): return max(f(2010,0),0)
During back track, the maximum
value returned is 3

Q.56 (d)
Since direct access is possible with
only index addressing mode is given
options. So option (d) is the correct
answer.

Q. 57 (d)
The code will run and give output =
10, so option A and B are discarded.
 int * x= malloc (sizeof (int)); This
statement assigns a location to x.
Now, (int*) malloc (sizeof (int));
again assigns a new location to x,
previous memory location is lost
because now we have no reference
to that location resulting in memory
leak. Therefore, option D is correct.

Q. 58 23
Digits: 5-0101, 4-0100, 3-0011, 2-
0010, 1-0000
Count of 1s: 2, 3, 5, 6, 7
Total: 2+3+5+6+7 = 23
Total (i) = 23

Therefore, the output is 23

Q.59 (c)

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

In the function foo every time in the
while foo is called with the value 3
because val is passed with post
decrement operator so the value 3 is
passed and val is decremented later.
Every time the function is called a
new variable is created as the
passed variable is passed by value,
with the value 3. So the function will
close abruptly without returning
any value.
In the function bar, in the while loop
value the value of val variable is not
decrementing, it remains 3 only. Bar
function in the while loop is called
with val-1 i.e 2 but value of val is not
decremented, so it will result in
infinite loop.

Q.60 (3)
Strlen (s) =3
Strlen (t) =5
Value of c is 0
[Strlen (s) –strlen (t) > 0] : Strlen(s)
: Strlen(t);
[Strlen(s) - Strlen(t)]=-2
Since it is givne in question Strlen
(s)–strlen(t) will give unsigned value.
So, [Strlen (s) - Strlen (t)]=[-2]=2
2 > 0: Strlen (s) : Strlen (t) ;since 2 >
0 will evaluate True so it will give
output as strlen (s)=3
Hence ‘3’ will be printed.

Q.61 (c)

Q.62 (a)
 Static char var; Initialization of a

variable located in data section of
memory .

 m = malloc(10); m=NULL; A lost
memory which can’t be freed
because free (m) is missed in code.

 Char*ptr[10]; : Sequence of
memory locations to store address.
register int var 1: Request to
allocate a CPU register to store data.

Q.63 (c)
Print xy(1,1)

Hence the output will be (1,0)

Q.64 (c)

Q.65 (0)
1. int m=10; // m= 10
2. int n,n1;
3. n = + + m; //n=11
4. n1= m + +; //n1=11,m =12
5. n- -; //n=10
6. - - n1; //n1=10
7.n-= n1; //n = 0
8. printf (“%d”,n);
The output will be 0.

Q.66 (b)

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.67 (c)
Firstly, Count (1024, 1024) will be
called and value of x will be
deducted by x/2. 'x' will be printed
10 times. On count=10, value of x
will become 1.

Since x=1, inner else loop will start
executing. On each call value of y
will be decreased by 1 and will be
executed until value of y becomes 1
(which is on 1023th call). Since
count() is called recursively for
every y=1023 and count() is called
10times for each y. Therefore, 1023
x 10 = 10230 Answer is 10230.

Q.68 (A)

 fun1(char *s1, char *s2)

Above function scope is local, so the

value changed here won’t affect actual

parameters. SO the values will be ‘Hi

Bye’.

fun2(char **s1, char **s2)

In this function value is pointer to

pointer, so it changes pointer of the

actual value. So values will be ‘Bye Hi’

Answer is ‘Hi Bye Bye Hi’

Q.69 (b)

// n takes 240

unsigned long int fun(unsigned long int n)

{

 // initialized sum = 0

 unsigned long int i, j, sum = 0;

 //First it takes i = n = 240,

 //then it divides i by 2 and incremented once j

 //each time, that's will make makes j = 40,

 for(i=n; i>1; i=i/2) j++;

 //Now the value of j = 40,

 //it divides j by 2 and incremented once sum

 //each time, that's will make makes sum = 5,

 for(; j>1; j=j/2) sum++;

 //returns sum = 5

 return sum;

}

So, answer is 5.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.1 Suppose you are given an array
s[1...n] and a procedure reverse (s, i,
j) which reverses the order of
elements in a between positions i
and j (both inclusive) What does the
following sequence do, where 1≤
k≤n:
reverse (s, 1 , k);
reverse (s, k + 1, n);
reverse (s, 1, n);
a) Rotates s left by k positions
b) Leaves s unchanged
c) Reverses all elements of s
d) None of these

 [GATE -2000]

Q.2 A program P reads in 500 integers in
the range [0, 100] representing the
scores of 500 students. It then prints
the frequency of each score above
50. What would be the best way for
P to store the frequencies?
a) An array of 50 numbers
b) An array of 100 numbers
c) An array of 500 numbers
d) A dynamically al located array of

550 numbers
 [GATE- 2005]

Q.3 Consider following C function in
which size is the number of
elements in the array E:
int MyX(int *E, unsigned int size)

{
 int Y = 0;
 int Z;
 int i, j, k;
 for(i = 0; i < size; i++)
 Y = Y + E[i];
 for(i = 0; i < size; i++)

 for(j = i; j < size; j++)
 {

 Z = 0;
 for(k = i; k <= j; k++)

 Z = Z + E[k];
 if (Z > Y)

 Y = Z;
 }

return Y;
}

The value returned by the function
MyX is the
a) Maximum possible sum of

element in sub-array of array E
b) Maximum element in any sub-

array of array E
c) Sum of maximum elements in all

possible sub-arrays of array E
d) Sum of all the elements in the

array E
 [GATE- 2014]

Q.4 Let A be a square matrix of size n X
n. Consider the following pseudo
code. What is the expected output?

C = 100 ;
for i =1 to n do
for j = 1 to n do
 {

Temp = A[i][j] + C;
 A[i][j] = A[j][i];
 A[j][i] = Temp – C;

 }
for i = 1 to n do
 for j = 1 to n do

 Output (A[i][j]);
a) The matrix A itself
b) Transpose of matrix A
c) Adding 100 to the upper diagonal

elements and subtracting 100
from lower diagonal elements of A

d) None of the above
 [GATE -2014]

Q.5 What is the output of the following C
code? Assume that the address of x
is 2000 (in decimal) and an integer
requires four bytes of memory.
int main()

GATE QUESTIONS(ARRAYS)

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

{
unsigned int x[4][3]={{1,2,3}, {
4,5,6} , {7,8,9} , {10,11,12}};
print f(" %u, %u, %u", x+3, *(x+3) ,
*((x+2)+ 3));
}
a) 2036, 2036, 2036
b) 2012, 4, 2204
c) 2036, 10, 10
d) 2012, 4, 6

 [GATE- 2015]

Q.6 Suppose c=< c[0] ,....,c[k- 1]> is an
array of length k, where all the
entries are from the set {0, 1}. For
any positive integers a and n,
consider the following pseudo code.
DOSOMETHING (c, a, n)
z := 1
for i :=0 to k-1

z := z2 mod n;
if c[i] = 1;

z := (z*a) mod n;
return z;
If k = 4, c =<1, 0, 1, 1>, a = 2 and n =
8, then the output of DOSOMETHING
(c, a, n) is ……………….

 [GATE- 2015]

Q.7 Consider the following two C code
segments. Y and X are one and two
dimensional arrays of size n and n ×
n respectively, where 2<=n<=10.
Assume that in both code segments,
elements of Y are initialized to 0 and
each element X[i] [j] of array X is
initialized to i + j. Further assume
that when stored in main memory
all elements of X are in same main
memory page frame

Code segment 1:
// initialize element of Y to 0
// initialize elements X[i][j] of X to
1+j
for (i = 0; i < n; i++)
Y[i] + = X[0][i];

Code segment 2:

//initialize elements of Y to 0
//initialize elements X[i][j] of X to
1+j
for (i = 0; i < n; i++)
Y[i] + = X[i][0];
Which of the following statements
is/are correct?
S1: Final contents of array Y will be
same in both code segments
S2: Elements of array X accessed
inside the for loop shown in code
segment 1 are contiguous in main
memory
S3: Elements of array X accessed
inside for loop shown in code
segment 2 are contiguous in main
memory.
a) Only S2 is correct
b) Only S3 is correct
c) Only S1 and S2 are correct
d) Only S1 and S3 are correct

 [GATE -2015]

Q.8 Consider the following C program.
#include <stdio. h>
#include <string .h>
int main ()
{

 char*c=”GATECSIT2017”;
 char*p = c

 printf(“%d”.(int)strlen (c+2[p]-
6[p]-1));
 return 0;
}
The output of the program is _____.

 [GATE-2017]

Q.9 Consider the following snippet of a C
program. Assume that swap (&x,
&y) exchanges the contents of x and
y.
int main ()
{
 int array [] ={3,5,1,4,6,2};
int done =0;
int i;
while(done = =0)
{

 done =1;

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

 for (i =0;< = 4 ; i ++)
 {

 if (array[i] < array [i+1])
 swap(& array[i], &array [i+1]);

 done =0;
 }

 }
for (i=5; i >1; i - -)
{

 if (array) [i] > array [i-1])
 {
 swap(& array [i], & array [i-1]);

 done = 0;
 }

}
printf({“%d”, array[3]);
}
The output of the program is ____.

 [GATE-2017]

1 2 3 4 5 6 7 8 9

(a) (a) (a) (a) (a) 0 (c) 2 3

ANSWER KEY:

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q. 1 (a)
From the given conditions it can be
clearly concluded that, the given
sequence rotates s left by k
positions.

Q.2 (a)
As per the given conditions it is
known that the frequency of those
students is printed whose score is
greater than 50 so, the range of
frequency contains score from 50 to
100 so; an array of 50 numbers is
suitable for representing the
frequency.

Q.3 (a)
The first for loop calculates the sum
of elements in the array E and stores
in Y. In the nested for loop, it
calculates the sum of elements of all
possible sub arrays.
In the condition Z>Y, it Checks
whether sum of elements of each
sub array is greater than the sum of
elements of array if so, that sum is
assigned to Y, if not 'Y' will be the
sum of elements of complete array.

Q.4 (a)
In the computation of given pseudo
code for each row and column of
Matrix A, each upper triangular
element will be interchanged by its
mirror image in the lower triangular
and after that the same lower
triangular element will be again re-
interchanged by its mirror image in
the upper triangular, resulting the
final computed Matrix A same as
input Matrix A.

Q.5 (a)
Address of x is 2000

Since x is considered as pointer to
an array of 3 integers and an integer
takes 4 bytes, value of x+3=
2000+3*3*4=2036
The expression *(x+3) also prints
same address as x is 2D array.
The expression *(x+2)+3=
2000+2*3*4+3*4=2036

Q.6 (0)
For i=0, z=1, c [0]=1, z=1*2 mod 8=
2
For i=1, z = 2*2 mod 8 = 4, c [1]=0 so
z remains 4
For i=2, z=16 mod 8=0

Q.7 (c)
In C, 2D arrays are stored in row
major order. So S2 is correct but not
S3.

Q.8 (2)

(C+2[P]-6[P]-1)

C+T-I-1
= C+11-1
=C+10
Hence print will print ‘2’.

Q.9 (3)

3 5 1 4 6 2
0 1 2 3 4 5

First for loop:
(i 0)

(i 1)

(i 2)

(i 3)

(i 4)











5 3 1 4 6 2

5 3 1 4 6 2

5 3 4 1 6 2

5 3 4 6 1 2

5 3 4 6 2 1

Second for loop

EXPLANATIONS

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

(i 5)

(i 4)

(i 3)

(i 2)

(i 1)











5 3 4 6 2 1

5 3 4 6 2 1

5 3 6 4 2 1

5 6 3 4 2 1

6 5 3 4 2 1

Now since done is’0’ hence the for
loops will execute again.
First for loop:
(i 0)

(i 1)

(i 2)

(i 3)

(i 4)











6 5 3 4 2 1

6 5 3 4 2 1

6 5 4 3 2 1

6 5 4 3 2 1

6 5 4 3 2 1

Second for loop:
(i 5)

(i 4)

(i 3)

(i 2)

(i 1)











6 5 4 3 2 1

6 5 4 3 2 1

6 5 4 3 2 1

6 5 4 3 2 1

6 5 4 3 2 1

Value of done is still ‘0’, hence the
for loop will execute again First for
loop:
This time there will be no change by
the for loop.
The value of done is ‘1’. Hence the
loop terminates as

6 5 4 3 2 1
0 1 2 3 4 5

The output of the program will be
‘3’.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.1 The best data structure to check
whether an arithmetic expression
has balanced parentheses is a
a) queue b) stack
c) tree d) list

 [GATE -2004]

Q.2 An implementation of a queue Q,
using two stacks S1 and S2, is given
below
void insert (Q, x){

push (Si , x);
}
void delete (Q) {

if (stack-empty (S2)) then
if (stack-empty (S1)) then
{

print (“Q is empty");
return;

}
else
while(! (Stack-empty(S1)))
{

x = pop (S1);
push (S2, x);

}
x =pop (S2);
}
Let n insert and m delete operations
be performed in an arbitrary order
on an empty queue. Let x and y be
the number of push and pop
operations performed respectively
in the process. Which one of the
following is true for all m and n?
a) n + m ≤ × < 2n and 2m ≤ y ≤ n + m
b) n + m ≤× < 2n and 2m ≤ y≤ 2n
c) 2m ≤ × < 2n and 2m ≤ y ≤ n + m
d) 2m≤ × < 2n and 2m≤ y ≤2n

 [GATE- 2006]

Q.3 The following postfix expression
with single digit operands is
evaluated using a stack :

8 2 3 ^ / 2 3 * +5 1 * -
Note that ^ is the exponential
operator. The top two elements of
the stack after the first * is evaluated
are
a) 6, 1 b) 5, 7
c) 3, 2 d) 1, 5

 [GATE-2007]

Q.4 Suppose a circular queue of capacity
(n -1) elements is implemented with
an array of n elements. Assume that
the insertion and deletion operations
are carried out using REAR and
FRONT as array index variables,
respectively. Initially REAR =FRONT
= 0. The conditions to detect queue
full and queue empty are
a) Full: (REAR + 1) mod n = =

FRONT
Empty: REAR = = FRONT

b) Full: (REAR + 1) mod n = =
FRONT
Empty: (FRONT + 1) mod n = =
REAR

c) Full: REAR = =FRONT
Empty: (REAR +1) mod n = =
FRONT

d) Full: (FRONT + 1) mod n = =
REAR
Empty: REAR = = FRONT

 [GATE-2012]

Q.5 Consider the following operation
along with Enqueue and Dequeue
operations on queues, where k is a
global parameter.
MultiDequeue(Q){

m = k;
while (Q is not empty) and
(m > 0)
{

Dequeue(Q);
m = m – 1;

}

GATE QUESTIONS(STACKS AND QUEUES)

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

}
What is the worst case time
complexity or a sequence of n queue
operations on an initially empty
queue?
a) θ(n) b) θ(n k)

c) θ(nk) d)  2θ n

 [GATE-2013]

Q.6 Suppose a stack implementation
supports an instruction REVERSE,
which reverses the order of
elements on the stack, in addition to
the PUSH and POP instructions.
Which one of the following
statements is TRUE with respect to
this modified stack?
a) A queue cannot be implemented

using this stack.
b) A queue can be implemented

where ENQUEUE takes a single
instruction and DEQUEUE takes
a sequence of two instructions.

c) A queue can be implemented
where ENQUEUE takes a
sequence of three instructions
and DEQUEUE takes a single
instruction.

d) A queue can be implemented
where both ENQUEUE and
DEQUEUE take a single
instruction each.

 [GATE -2014]

Q.7 Consider the C program below.
#include<stdio.h>
int *A, stkTop;
int stkFunc (int opcode, int val)
{
static int size =0, stkTop=0;
switch (opcode)
{
 case -1 :

size = val; break;
 case 0 :

if (stkTop < size)
A [stkTop++] = val;

break;

 default :
if (stkTop)

return A [--stkTop];
}
return -1;
}
int main ()
{
int B[20] ; A = B;
stkTop = -1;
stkFunc (-1, 10);
stkFunc (0, 5);
stkFunc (0, 10);
printf (“%d\n”, stkFunc(1, 0) +
stkfunc(1, 0);
}
The value printed by the above
program is _____________.

 [GATE -2015]

Q.8 The result of evaluating the postfix
expression 10 5 + 60 6 / * 8 − is

a) 284 b) 213
c) 142 d) 71

 [GATE- 2015]

Q.9 A queue is implemented using an
array such that ENQUEUE and
DEQUEUE operations are performed
efficiently. Which one of the
following statements is CORRECT (n
refers to the number of items in the
queue)?
a) Both operations can be

performed in O(1) time
b) At most one operation can be

performed in O(1) time but the
worst case time for the other
operation will be Ω(n)

c) The worst case time complexity
for both operations will be Ω(n)

d) Worst case time complexity for
both operations will be Ω(log n)

 [GATE -2016]

Q.10 Let Q denote a queue containing
sixteen numbers and S be an empty
stack. Head(Q) returns the element

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

at the head of the queue Q without
removing it from Q. Similarly Top(S)
returns the element at the top of S
without removing it from S.
Consider the algorithm given below.

while Q is not Empty do
if S is Empty OR Top(S) ≤
Head(Q) then
x:= Dequeue(Q);
Push(S, x);
else
x:= Pop(S);
Enqueue(Q, x);
end
end

The maximum possible number of
iterations of the while loop in the
algorithm is_____.

 [GATE -2016]

Q.11 Consider the following New-order
strategy for traversing a binary tree:
• Visit the root;
• Visit the right subtree using

New-order;
• Visit the left subtree using New-

order;
The New-order traversal of the
expression tree corresponding to
the reverse polish expression
4 * 5 – 2 ^ 6 7 * 1 + – is given by:
a) + – 1 6 7 * 2 ^ 5 – 3 4 *
b) – + 1 * 6 7 ^ 2 – 5 * 3 4
c) – + 1 * 7 6 ^ 2 – 5 * 4 3
d) 1 7 6 * + 2 5 4 3 * – ^ –

 [GATE -2016]

Q.12 A circular queue has been
implemented using a singly linked
list where each node consists of a
value and a single pointer pointing
to the next node. We maintain
exactly two external pointers
FRONT and REAR pointing to the
front node and the rear node of the
queue, respectively. Which of the
following statements is/ are
CORRECT for such a circular queue,
so that insertion and deletion
operations can be performed in 0(1)
time?
I. Next pointer of front node pints

to the rear node.
II. Next pointer of rear node points

to the front node
a) I only b) II only
c) Both I and II d) Neither I nor II

[GATE -2017]

1 2 3 4 5 6 7 8 9 10 11 12

(b) (a) (a) (a) (a) (c) 15 (c) (a) 256 (c) (b)

ANSWER KEY:

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q. 1 (b)
The best data structure that can be
used is stack. Let’s check the
algorithm -

Q. 2 (a)
From the given implementation
total numbers of push operations
are given by n+m, where n tells no.
of insertion and m tells the number
of deletions. Maximum numbers of
insert operations allowed are 2n, so
n+m ≤ x≤ 2n-1. Also the numbers of
pop operations are n+m. But the
numbers of delete operations are
2m that are less than the number of
pop operations so, the required
condition becomes 2m<=n+m-2.
From the above two conditions, we
get n+m ≤ x ≤2n and 2m≤n+m

Q. 3 (a)
From the given expression,
Expression symbol Op1Op2 value
tops(RL)

8 8

2 8, 2
3 8, 2, 3

∧ 2 3 8 8, 8
/ 8 8 1 1

2 1, 2
3 1, 2, 3
* 2 3 6 1, 6

So, the top 2 elements of the stack
are 6, 1 after the first * is evaluated.

Q. 4 (a)

Take a full queue e.g., n = 7
Front Rear

(insert six elements one by one)
(R + 1) mod n
⇒(6 +1) mod 7
⇒0 that means queue is full.
So, for full T (R +1) and n =Front
Take an empty queue and given
front = rear= 0. Here front and rear
is same so for empty queue.
Front = Rear

Q. 5 (a)
To compute the worst case time
complexity of a sequence of n queue
operations on an initially empty
queue is θ(n).
Complexity of a sequence of ‘n’
queue operations = Total complexity
of Enqueue operations (a) + Total
complexity of Dequeue operations
(β).

EXPLANATIONS

EXPLANATIONS

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Total complexity of Dequeue
operations (β). < Total complexity of
Enqueue operations β<α ...(i)
Total complexity of queue
operations
(β). < n ...(ii)
Total complexity of n operations
=α+ β.
<α +α [From ...(i)]
<n + n [From ...(ii)]
<2 n
Worst Case Time Complexity of 'n’
operations is (a).θ (n).

Q.6 (c)
Option (a) is false because queue
can be implemented by using the
modified stack as by reversing the
stack. LIFO will become FIFO.
Implementation of ENQUEUE &
DEQUEUE takes four sequence of
instructions as follows:
1. Enqueue: Reverse, Push, Revesre

Dequeue: POP
(OR)

2. Enqueue: Push
Dequeue: Reverse, POP, Reverse

Q.7 (15)
stkFunc (-1,10); // initialize size as 10
stkFunc (0, 5); // push 5
stkFunc (0, 10); // push 10
printf (“%d\n”, stkFunc(1,0)+
stkfunc(1, 0));
Pop the two elements, add them and
print the result which is 5+10 =15

Q.8 (c)
Operator +: 10+5=15
Stack: 15 60 6
Operator /: 60/6=10
Stack: 15 10
Operator *: 15*10 = 150
Stack: 150 8
Operator -: 150 – 8 =142

Q.9 (a)
Queue has both front and rear
pointers at which deletion and

insertion is done respectively. So
there is no dependency on number
of elements.
++front deletes the element,
Q[++rear] = x inserts the element. So
both operations can be performed in
O(1) time.

Q.10 (256)
Trying with queue elements, say n =
1, 2, 3, then maximum number of
iterations are noticed as n2. Here n =
16, So answer will be 256.

Q.11 (c)
The given expression is postfix
expression and the corresponding
expression tree is as below.

The new order traversal of the
above tree is: – + 1 * 7 6 ^ 2 – 5 * 4 3

Q.12 (b)

Since insertion in a queue are
always from REAR and deletion is
always form FRONT. Hence having
the next pointer of REAR node
pointing to the FRONT node will
lead to both insertion and deletion
operation in O (1) time.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.1 In the worst case, the number of
comparisons needed to search a
singly linked list of length n for a
given element is

a) log n b)
n

2

c) n

2log 1 d) n

 [GATE-2002]

Q.2 Consider the function f defined
below:
struct item {

int data;
struct item * next;

};
int f(struct item *p) {

return ((p==NULL) || (p->
next==NULL) || ((p-> data
<=p-> next ->data) &&
f(p-> next)));

}
For a given linked list p, the function
f returns 1, if and only, if
a) The list is empty or has exactly

one element
b) The elements in the list are

sorted in non-decreasing order
of data value

c) The elements in the list are
sorted in non-increasing order of
data value

d) Not all elements in the list have
the same data value

 [GATE 2003]

Q.3 The following G function takes a
single-linked list of integers as a
parameter and rearranges the
elements of the list. The function is
called with the list containing the
integers 1, 2, 3, 4, 5, 6, 7 in the given
order. What will be the contents of
list after the function completes

execution?
struct node {

int value;
struct node *next;

};
void rearrange (struct node*list){

struct node *p, *q;
int temp;

if(!list || !list ->next) return;
p =list; q = list -> next;
while (q){

temp = p -> value;
p -> value =q -> value;
q -> value = temp;
p = q-> next;
q = p? p-> next: 0;

}}
a) 1, 2, 3, 4, 5, 6, 7 b) 2, 1, 4, 3, 6, 5, 7
c) 1, 3, 2, 5, 4, 7, 6 d) 2, 3, 4, 5, 6, 7, 1

 [GATE 2008]

Q.4 The following C function takes a
simply-linked list as input argument.
It modifies the list by moving the
last element to the front of the list
and returns the modified list. Some
part of the code is left blank.
typedef struct node {

int value;
struct node *next;

} Node;
Node *move_to_front (Node *head) {
Node *p, *q;
if (head ==NULL || (head-
>next==NULL))
return head;
q= NULL; p= head;
while (p-> next!= NULL) {

q=p;
p=p-> next;

}
__________________;
return head;
}

GATE QUESTIONS(LINKED LIST)

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Choose the correct alternative to
replace the blank line.
a) q = NULL; p->next = head; head =

p;
b) q-> next =NULL; head = p; p-

>next = head;
c) head = p; p->next=q; q-> next =

NULL;
d) q-> next = NULL; p->next==

head;head = p;
 [GATE -2010]

Q.1 (d)
Linked list is also known as one way
list. As we know that linked list is a
list implemented by each item
having a link to the next item. It is
also a linear collection of data
elements known as nodes. It needs
a comparison with every node (in
worst case) in the list in the near
order. So number of comparisons is
n.

Q.2 (d)
When all the elements in the list do
not have the same value, the
function f returns the value as 1 for
p==NULL or p → next == NULL or p
→ data <= next → data and p → next

Q.3 (b)
The input sequence gets changed
due to the reason that C code above
is non-recursive.
Input sequence → 1, 2, 3, 4, 5, 6, 7
Output sequence → 2, 1, 4, 3, 6, 5, 7

So, the non-recursive nature of the C
code interchanges the values in
position of one and two then
interchanges values in position of
three and four and then
interchanges values in fifth and six
positions.

Q.4 (d)
The following code sequence will
modify the last element to the front
of the list and return the modified
list.

q  next = NULL;
p  next = head;
head = p;

1 2 3 4

(d) (d) (b) (d)

ANSWER KEY:

EXPLANATIONS

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.1 Consider the following nested
representation of Binary trees:
(XYZ) indicates Y and are the left
and right sub trees, respectively, of
node Z. Note that Y and Z may be
NULL, or further nested. Which of
the following represents a valid
binary tree?
a) (1 2 (4 5 6 7))
b) (1 (2 3 4) 5 6) 7)
c) (1 (2 3 4) (5 6 7))
d) (1 (2 3 NULL (4 5))

 [GATE -2000]

Q.2 The number of leaf nodes in a
rooted tree of n nodes, with each
node having 0 or 3 children is

a)
n

2
b)

(n -1)

3

c)
(n -1)

2
d)

(2n +1)

3
 [GATE-2002]

Q.3 suppose the numbers 7, 5, 1, 8, 3, 6,
0, 9, 4, 2 are inserted in that order
into an initially empty binary search
tree. The binary search tree uses the
usual order in of n natural numbers.
What is the in-order traversal
sequence of the resultant tree?
a) 7 5 1 0 3 2 4 6 8 9
b) 0 2 4 3 1 6 5 9 8 7
c) 0 1 2 3 4 5 6 7 9
d) 9 8 6 4 2 3 0 1 5 7

 [GATE 2003]

Q.4 Let T(n) be the number of different
binary search trees on n distinct
elements. Then,

n

k 1

T(n) T(K 1)T(x)


  , where x is

a) n – k + 1 b) n – k
c) n – k – 1 d) n – k - 2

[GATE 2003]

Q.5 The following numbers are inserted
into an empty binary search tree in
the given order: 10, 1, 3, 5, 15, 12,
and 16. What is the height of the
binary search tree (the height is the
maximum distance of a leaf node
from the root)?
a) 2 b) 3
c) 4 d) 6

 [GATE -2004]

Q.6 Consider the following C program
segment
structCellNode{

structCellNode *leftChild;
int element;
structCellNde *rightChild;

}
int Dosomething (structCellNode
*ptr){

int value = 0;
if (ptr ! = NULL){

if (ptr ->leftChild ! NULL)
value = 1 + Domething
(ptr->leftChild);
if (ptr->rightChild ! =
NULL)
value = max (value, 1 +
DoSomething (ptr-
>rightChild));

}
return (value);
}
The value returned by the function
Do Something when a pointer to the
root of a non-empty tree is passed
as argument is
a) the number of leaf nodes in the

tree
b) the number of nodes in the tree
c) the number of internal nodes in

the tree
d) the height of the tree

 [GATE- 2004]

GATE QUESTIONS(TREES)

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.7 Consider the label sequences
obtained by the following pairs of
traversals on a labelled binary tree.
Which of these pairs identify a tree
uniquely?
i) pre-order and post order
ii) in-order and post order
iii) pre-order and in order
iv) level order and post order
a) (i) only b) (ii) and (iii)
c) (iii) only d) (iv) only

 [GATE-2004]

Q.8 In a complete k-ary tree, every
internal node has exactly k children.
The number of leaves in such a tree
with n internal nodes is
a) nk b) (n-1)k+1
c) n(k-1)+1 d) n(k-1)

 [GATE-2005]

Q.9 How many distinct binary search
trees can be created out of 4 distinct
keys?
a) 5 b) 14
c) 24 d) 42

 [GATE-2005]

Q.10 A priority-queue is implemented as
a max-head. Initially, it has 5
elements. The level-order traversal
of the heap is given below.
10, 8, 5, 3, 2
Two new elements 1 and 7 are
inserted in the heap in that order.
The level-order traversal of the head
after the insertion of the element is
a) 10, 8, 7, 5, 3, 2, 1
b) 10, 8, 7, 2, 3, 1, 5
c) 10, 8, 7, 1, 2, 3, 5
d) 10, 8, 7, 3, 2, 1, 5

 [GATE-2005]

Q.11 Post order traversal of a given
binary search tree, T produces the
following sequence of keys
10, 9, 23, 22, 27, 25, 15, 50, 95, 60,
40, 29

Which in one of the following
sequences of keys can be the result
of an in-order traversal of the tree T?
a) 9, 10, 15, 22, 23, 25, 27, 29, 40,

50, 60,95
b) 9, 10, 15, 22, 40, 50, 60, 95, 23,

25, 27,29
c) 29, 15, 9, 10, 25, 22, 23, 27, 40,

60, 50,95
d) 95, 50, 60, 40, 27, 23, 22, 25, 10,

9,15,29
 [GATE 2005]

Q.12 The elements 32, 15, 20, 30, 12, 25,
16, are inserted one by one in the
given order into a max-heap. The
resultant max-heap is

a) b)

c) d)

[GATE 2005]

Statements for Linked Answer
Questions Q.13 and Q.14
A 3-ary max heap is like a binary max heap,
but instead of 2 children, nodes have 3
children. A 3-ary heap can be represented
by an array as follows : The root is stored in
the first location, a[0), nodes in the next
level, from left to right is stored from left
to right is stored from a[1] to a[3]. The
nodes from the second level of the tree
from left to right are stored from a[4]
location onward. An item x can be inserted
into a 3-ary heap containing n items by

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

placing x in the location a[n] and pushing it
up the tree to satisfy the heap property.

Q.13 Which one of the following is a valid
sequence of elements in an array
representing 3-ary max heap?
a) 1, 3, 5, 6, 8, 9 b) 9, 6, 3, 1, 8, 5
c) 9, 3, 6, 8, 5, 1 d) 9, 5, 6, 8, 3, 1

[GATE 2006]

Q.14 Suppose the elements 7, 2, 10 and 4
are inserted, in that order, into the
valid3-ary max heap found in the
above question 60. Which one of the
following is the sequence of items in
the array representing the resultant
heap?
a) 10, 7, 9, 8, 3, 1, 5, 2, 6, 4
b) 10, 9, 8, 7, 6, 5, 4, 3, 2, 1
c) 10, 9, 4, 3, 7, 6, 8, 2, 1, 3
d) 10, 8, 6, 9, 7, 2, 3, 4, 1, 5

 [GATE -2006]

Q.15 In a binary max heap containing n
numbers, the smallest element can
be found in time
a) O(n) b) O(log n)
c) O(log log n) d) O(1)

 [GATE-2006]

Q.16 The maximum number of binary
trees that can be formed with three
unlabelled nodes is
a) 1 b) 5
c) 4 d) 3

 [GATE-2007]

Q.17 The height of a binary tree is the
maximum number of edges in any
root to leaf path. The maximum
number of nodes in a binary tree of
height h is
a) 2h - 1 b) 2h-1 – 1
c) 2h+1 - 1 d) 2h+1

 [GATE-2007]

Q.18 Consider the process of inserting an
element into a Max Heap, where the
Max Heap is represented by an

array. Suppose we perform a binary
search on the path from the new leaf
to the root to find the position for
the newly inserted element, the
number of comparisons performed
is
a) (

2log n) b) (
2log 2log n)

c)  (n) d)  (n
2log n)

 [GATE-2007]

Q.19 A complete n-ary tree is a tree in
which each node has n children or
no children. Let be the number of
internal nodes and L be the number
of leaves in a complete n-array tree.
If L = 41, and l = 10, what is the
value of n?
a) 3 b) 4
c) 5 d) 6

 [GATE-2007]

Q.20 Consider the following C program
segment where Cell Node
represents a node in a binary tree:
Struct Cell Node{

Struct CeII Node *leftChild;
int element;
struct Cell Node *rightChild;

}
intGetValue (structCeIINode *ptr
int value = 0;
if (ptr != NULL)
if ((ptr->leftChild = = NULL) &&
(ptr ->rightChild == NULL)){

value = 1;
else
value = value + GetValue (ptr
->leftChild)
+ Getvalue (ptr ->rightChiId);
}

return (value);
}
The value returned by GetValue
when a pointer to the root of a
binary tree is passed as its argument
is
a) the number of nodes in the tree
b) the number of internal nodes in

the tree

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

c) the number of leaf nodes in the
tree

d) the height of the tree
 [GATE 2007]

Q.21 The in-order and pre-order
traversal of a binary tree are d b e a f
c g and a b d e c f g, respectively the
post order traversal of the binary
tree is
a) d e b f g c a b) e d b g f c a
c) e d b f g c a d) d e f g b c a

 [GATE 2007]

Q.22 You are given the postorder
traversal P, of a binary search tree
on the n elements 1, 2, ……, n. You
have to determine the unique binary
search tree that has P as its
postorder traversal. What is the
time complexity of the most efficient
algorithm for doing this?
a)  (log n)
b)  (n)
c)  (n log n)
d) None of the above, as the tree

cannot be uniquely determined
 [GATE-2008]

Statements for Linked Answer
Questions Q.23, 24 and 25
Consider a binary max-heap implemented
using an array

Q.23 Which one of the following arrays
represents a binary max-heap?
a) {25, 12, 16, 13, 10, 8, 14}
b) {25, 14, 13, 16, 10, 8, 12}
c) {25, 14, 16, 13, 10, 8, 12}
d) {25, 14, 12, 13, 10, 8, 16}

[GATE 2009]

Q.24 What is the content of the array
after two delete operations on the
correct answer to the previous
question?
a) {14, 13, 12, 10, 8}
b) {14, 12, 13, 8, 10}
c) {14, 13, 8, 12, 10}
d) {14, 13, 12, 8, 10}

 [GATE 2009]
Q.25 What is the maximum height of any

AVL-tree with 7 nodes? Assume that
the height of a tree with a single
node is 0.
a) 2 b) 3
c) 4 d) 5

[GATE 2009]

Q.26 We are given a set of n distinct
elements and an unlabeled binary
tree with n nodes. In how many
ways can we populate the tree with
the given set so that it becomes a
binary search tree?
a) 0 b) 1

c) n! d)
2n

nC

n 1

 [GATE 2011]

Q.27 A max-heap is a heap where the
value of each parent is greater than
or equal to the value of its children.
Which of the following is a max-
heap?
a)

b)

c)

d)

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.28 The height of a tree is defined as the
number of edges on the longest path
in the tree. The function shown in
the pseudo code below in invoked as
height(root) to compute the height
of a binary tree rooted at the tree
pointer root.
int height (treeptr in){

if (n = = NULL) return -1 ;
If (n → left = = NULL)
If (n → right = = NULL)
return 0;

Else B1 return;// Box 1

Else {h1 = height (n → left) ;
If (n → right = NULL) return
(1 + h1) ;
Else {h2 = height (n → right) ;

B2

Return;// Box 1
}
The appropriate expressions for the
two boxes B1 and B2 are
a) B1: (1 + height (n → right) B2: (1

+ max (h1 , h2))
b) B1: (height (n →right) B2: (1 +

max(h1 , h2))
c) B1: height (n →right) B2: max

(h1,h2)
d) B1: (1 + height (n → right) B2:

max (h1 , h2)
 [GATE-2012]

Q.29 The pre-order traversal sequence of
a binary search tree is 30, 20, 10, 15,
25, 23, 39, 35, 42. Which one of the
following is the post order traversal
sequence of the same tree?
a) 10, 20, 15, 23, 25, 35, 42, 39, 30
b) 15, 10, 25, 23, 20, 42, 35, 39, 30
c) 15, 20, 10, .23, 25, 42, 35, 39, 30
d) 15, 10, 23. 25, 20, 35, 42, 39, 30

 [GATE-2013]

Q.30 Consider the C function given below.
Assume that the array ListA contains
n (>0) elements, sorted in ascending
order.
int processArray(int *listA, int x, int n)
{

 int i, j, k;
 i = 0; j = n-1;
 do {

 k = (i + j) / 2;
 if (x <= listA[k])

j = k-1;
 if (listA[k] <= x)

i = k+1;
 } while (i<=j);

 if (listA[k] == x)
return k;

 else
return -1;

}
Which of the following statements
about the function process Array is
CORRECT?
a) It will run into an infinite loop

when x is not in list A
b) It is an implementation of

binary search
c) It will always find the maximum

element in list A
d) It will return -1 even when x is

present in list A.
 [GATE -2014]

Q.31 A priority queue is implemented as
a Max-Heap. Initially, it has 5
elements. The level-order traversal
of the heap is: 10, 8, 5, 3, 2. Two new
elements 1 and 7 are inserted into
the heap in that order. The level-
order traversal of the heap after the
insertion of the elements is:
a) 10, 8, 7, 3, 2, 1, 5
b) 10, 8, 7, 2, 3, 1, 5
c) 10, 8, 7, 1, 2, 3, 5
d) 10, 8, 7, 5, 3, 2, 1

 [GATE -2014]

Q.32 Consider a rooted Binary tree
represented using pointers. The best

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

upper bound on the time required to
determine the number of subtrees
having having exactly 4 nodes O(na
Logn b). Then the value of a + 10b is

 [GATE- 2014]
Q.33 Consider the following rooted tree

with the vertex labeled P as root:

The order in which the nodes are
visited during an in-order traversal
of a tree is
a) SQPTRWUV b) SQPTUWRV
c) SQPTWUVR d) SQPTRUWV

 [GATE -2014]

Q.34 Consider the pseudo code given
below. The function DoSomething()
takes as argument a pointer to the
root of arbitrary tree represented by
the leftmost child right sibling
representation. Each node of the
tree is of type treeNode.
typedef struct treeNode* treeptr;
struct treeNode
{ treeptr leftmostchild, rightsibling;
};
int DoSomething (treeptr tree)
{
 int value = 0;
 if (tree != NULL)
 {

 if (treeleftmostchild ==
NULL)

Value = 1;
 else

 value = DoSomething (
treeleftmostchild);
 value = value + DoSomething (
treerightsibling);
 }

 return (value);
}
When the pointer to the root of the
tree is passed as argument to
DoSomething, the value returned by
the function corresponds to the
a) Number of internal nodes in the

tree
b) Height of the tree
c) Number of nodes without a right

sibling in the tree
d) Number of leaf nodes in the tree

 [GATE -2014]

Q.35 The pre-order traversal sequence of
a binary search tree is 30, 20, 10, 15,
25, 23, 39, 42 which one of the
following is the post-order traversal
sequence of the same tree?
a) 10, 20, 15, 23, 25, 35, 42, 39, 30
b) 15, 10, 25, 23, 20, 42, 35, 39, 30
c) 15, 20, 10, 23, 25, 42, 35, 39, 30
d) 15, 10, 23, 25, 20, 35, 42, 39, 30

 [GATE-2013]

Q.36 The height of a tree is the length of
the longest root-to-leaf path in it.
The maximum and minimum number
of nodes in a binary tree of height 5
are
a) 63 and 6 b) 64 and 5
c) 32 and 6 d) 31 and 5

 [GATE -2015]

Q.37 Which of the following is/are
correct inorder traversal
sequence(s) of binary search
tree(s)?
1) 3, 5, 7, 8, 15, 19, 25
2) 5, 8, 9, 12, 10, 15, 25
3) 2, 7, 10, 8, 14, 16, 20
4) 4, 6, 7, 9, 18, 20, 25
a) 1 and 4 only b) 2 and 3 only
c) 2 and 4 only d) 2 only

 [GATE -2015]

Q.38 Consider a max heap, represented
by the array: 40, 30, 20, 10, 15, 16,
17, 8,

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Array
Index

1 2 3 4 5 6 7 8 9

Value 40 30 20 10 15 16 17 8 4

Now consider that a value 35 is
inserted into this heap. After
insertion, the new heap is
a) 40, 30, 20, 10, 15, 16, 17, 8, 4, 35
b) 40, 35, 20, 10, 30, 16, 17, 8, 4, 15
c) 40, 30, 20, 10, 35, 16, 17, 8, 4, 15
d) 40, 35, 20, 10, 15, 16, 17, 8, 4, 30

 [GATE -2015]

Q.39 A binary tree T has 20 leaves. The
number of nodes in T having two
children is _______.

 [GATE- 2015]

Q.40 Consider the following array of
elements.
<89,19,50,17,12,15,2,5,7,11,6,9,100>
The minimum number of
interchanges needed to convert it
into a max-heap is
a) 4 b) 5
c) 2 d) 3

 [GATE -2015]

Q.41 While inserting the elements 71,65,
84,69,67,83 in an empty binary
search tree (BST) in the sequence
shown, the element in the lowest
level is
a) 65 b) 67
c) 69 d) 83

 [GATE- 2015]

Q.42 The number of ways in which the
numbers 1, 2, 3, 4, 5, 6, 7 can be
inserted in an empty binary search
tree, such that the resulting tree has
height 6, is __________.
Note: The height of a tree with a
single node is 0

 [GATE- 2016]

Q.43 An operator delete(i) for a binary
heap data structure is to be
designed to delete the item in the ith
node. Assume that the heap is
implemented in an array and i refers
to the i-th index of the array. If the
heap tree has depth d (number of
edges on the path from the root to
the farthest leaf), then what is the
time complexity to re-fix the heap
efficiently after the removal of the
element?
a) O(1)
b) O(d) but not O(1)
c) O(2d) but not O(d)
d) O(d2d) but not O(2d)

 [GATE-2016]

Q.44 Let T be a binary search tree with 15
nodes. The minimum and maximum
possible heights of T are:
Note: The height of a tree with a
single node is 0.
a) 4 and 15respectively
b) 3 and 14 respectively
c) 4 and 14 respectively
d) 3 and 15 respectively

 [GATE-2017]

Q.45 The pre- order traversal of a binary
search tree is given tree by 12, 8, 6,
2, 7, 9, 10, 16, 15, 19, 17, 20. Then
the post order traversal of this tree is:
a) 2,6,7,8,9,10,12,15,16,17,19,20
b) 2,7,6,10,9,8,15,17,20,19,16,12
c) 7,2,6,8,9,10,20,17,19,15,16,12
d)7,6,2,10.98.15.16.17.20.19.12

 [GATE-2017]

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(c) (d) (c) (a) (b) (d) (b) (c) (b) (d) (a) (a) (d) (a) (a)

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

(b) (c) (b) (c) (c) (a) (b) (c) (d) (b) (b) (b) (a) (d) (b)

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

(a) 1 (a) (d) (d) (a) (a) (b) 19 (d) (b) 64 (b) (b) (b)

ANSWER KEY:

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q. 1 (c)
(XYZ) indicates that Y is left subtree
and Z is right subtree Node is X

As per given in the question:
(1(234) (567))
We get, the following tree

1 is the root node
2 and 3 are the non leaf node
4, 5, 6, 7 are the leaf node which
may be null or further nested
because in a binary tree every node
has 0 or children and not just 1.

Q.2 (d)
Drawing a tree is more than
sufficient to find the solutions to
such kind of questions

At level 0 number of nodes =1
Total nodes =1
At level 1 leaf of nodes =3
Total nodes upto level 1=4
At level 2 leaf of nodes =7
Total nodes =10
Therefore, total number of leaf
nodes = (2n +1)/3 n=10
So, leaf nodes = (2 × 10 + 1)/3=7

Q.3 (c)

Therefore, the in order traversal
came out to be 0 1 2 3 4 5 6 7 8 9.
Note: The in order traversal of a
BST is in always sorted order.

Q.4 (a)
Let the number of nodes in the left
subtree of the binary search tree be
k
So,
T(0) = 1 '

     
n

k 1

T n T k 1 T x ,


 

 = T(x) [T(0) + ...+ T(n - 1)]
Then, x = n - k + 1

Q.5 (b)
Binary tree required is obtained in
the following manner

EXPLANATIONS

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Thus the maximum height, i.e., the
maximum distance of a leaf node
from the root is 3.

Q.6 (d)
The total number of edges in left sub
tree is calculated by the do
Something function recursively as
this function is are cursive function
and the root node is included when
1 is added to the count stored in the
variable value. Similar thing is done
with right sub tree and finally max
function in the program return the
height of the tree as it calculates the
total number of edges from root
node to leaf node for either the left
or right sub tree.

Q.7 (b)
We must know the following.
Either Preorder or Post order with
the combination of inorder can
identify the binary tree uniquely.
But only preorder and post order
combination cannot identify binary
tree uniquely.

Q.8 (c)
Let us consider a binary tree. In a
binary tree :-
Number of leaves -1= Number of
nodes
In k- ary tree where is each node has
k children, this implies that k-1 key
have no leaves.
Now, it is given that number of
nodes are n, therefore number of
leave will be n(k-1)+1.

Q.9 (b)
The number of keys as per given are
4
Applying the direct formula
Bn = 1/(n+1)×(2!/n!n!)
Where Bn is number of binary trees
and n is the number of tree
→ Bn = 1/(4+1)×(8!/4!4!)
→ Bn = 1/5×(8×7×6×5×4!)/4!4!

→ Bn = 8×7×6/(4×3×2)
→ Bn = 56/4
→ Bn = 14
The total number of binary tree with
n = 4 is 14.

Q.10 (d)
Initial level order traversal with
10, 8, 5, 3, 2

Now, let us insert the value

Therefore, the level order traversal
comes out to be 10, 8, 7, 3, 2, 1, 5

Q.11 (a)
For representing the tree in an in
order traversal, the tree is always
drawn in a way such that the given
order is in an increasing order thus,
the tree consists of sequence 9, 10,
15, 22, 23, 25, 27, 29, 40, 50, 60, 95

Q.12 (a)
The insertion of elements takes
place in the following manner and in
this order

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.13 (d)
The condition that needs to satisfy
for maximum heap is that the root
node is the largest element in tree as
compared to all its children.
Thus, in option (a) the heap
obtained is not the maximum heap
as the root element is not the largest
one the heap obtained is

Also the heap obtained from options
(b) and (c) are not maximum heap

Thus, option (d) , is correct as it
gives the following maximum heap.

Q.14 (a)
Whenever we insert an element into
a heap such that the resultant heap
is maximum one the element is
inserted in the last position and then
it is positioned to a correct place to
obtain a maximum heap.
The heap obtained when the
elements are inserted in the order 7,
2, 10 and 4, is as follows

Q.15 (a)
Time takes by binary max heap to
identify max element is O(1).
Therefore, the time taken by binary
max heap to identify the smallest
element is O(n).

Q.16 (b)
It is given that n=3

 2n

n

1
C

n 1

 6

3

1
C

3 1

1.6!
5

4 3!3!




Therefore, there are 5 trees that can
be formed with three unlabelled
node.
1 2 3

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

4 5

Q.17 (c)
This is a formula to calculate the
total no of nodes. It is 2h+1 - 1.
Lets consider the same examples to
prove this.
1. Simplest could be taking the

binary tree of h(height) = 0.
Now, the binary tree of the
height h will have only 1 node.

Using formula 2(0+1)-1=1. Hence,
the formula is correct.

2. Binary tree of h (height) =2.

Using formula 2^(2+1)-1= 7.
Hence, the formula is correct.

Q.18 (b)
Max heap is a particular kind of
binary tree with the following
properties:
The value of each node is not less
than the values stored in each of its
children.
The tree is perfectly balanced, and
the leaves in the last level are all in
the leftmost positions.
The height of heap tree is logn. So
there are logn elements from root to
leaf path. The binary search on these
logn elements take O(loglogn).

Q.19 (c)
Formula used: l(n-1)+1=1
→ 10(n-1)+1 =41
→ 10n-9 = 41
→ 10n = 50
→ n = 5
The node which is have 5 children.

Q.20 (c)
Since, the value is initialized to zero
as depicted by the statement int
value=0 also from the statement
value =1 it is clear that the binary
tree, if doesn't have. Any left child or
right child and have only the root
'node then the number of leaf node
in the, tree is 1 this is what was
depicted in the, 'if' part of the loop.
Now, the else part tells that, if the
tree contains left and right child
then, the number of leaf nodes are
found recursively and the value
returned is the number of leaf nodes
in the tree.

Q.21 (a)
The in order traversal sequence is
dbeafcg and the preorder traversal
sequence is abdecfg so, the tree is

Q.22 (b)
The traversal of binary search tree
will be of the sequence 1,2,3,….n
since it’s a post order traversal of a
binary search tree. Therefore, by
using the post order, unique binary
tree can be constructed in O(n) time.

Q.23 (c)
Suppose that we have a node x, then
for the condition
1<= x <= n/2 and A[x] >= A [2x+1]
where 2x and 2x+1 are left child and
right child of the node x respectively
of a binary max-heap.
Thus, under given cases the tree
obtained is:

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.24 (d)
Always a greater element is deleted
from the binary heap first. The
answer of previous question gave
the array as [25, 14, 16, 13, 10, 12,
8]
So, when the greatest element, i.e.,
25 is deleted the array becomes [14,
16, 13, 10, 12, 8]
And next after second deletion the
array becomes [14, 13, 10, 12, and
8]
Thus, the procedure for obtaining
the final tree is as follows.

Q.25 (b)
There are various ways of drawing
an AVL tree. One of them is

Thus, according to this the
maximum height of the tree is 3.

Q.26 (b)
For 4 elements 1, 2, 3, 4 the binary
search tree will be

 2n

n

1
15 C

n 1



This is only when only nodes are
given.

But in question, the unlabelled
binary tree is given, so we can put

the numbers only in 1 way so that it
becomes binary search tree.

Q.27 (b)
As heap is a complete binary tree
with parent dominance property.

Q.28 (a)
Height of a tree is obtained by
calculating 1+ height (right sub tree)
and 1+ height (left sub tree) and
picking the max among these two.

Q.29 (d)
Preorder traversal sequence of a
binary search tree is 30, 20, 10, 15,
25, 23, 39, 35, 42.
To compute post order traversal
sequence of the same tree.
The Preorder traversal sequence is
formed as follows First root, then
left subtree, then right subtree and
then recursively repeating it.
30 is the root and all elements < 30
will be in the left subtree and all >
30 in right subtree, which is a,
property of a Binary Search Tree.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Moving left subtree of tree rooted at
30

Moving to the left subtree of
element.

Left subtree is empty, so going to the
right subtree of element (10)

Left and Right subtrees are empty,
so print root (15) going back from
right subtree

Print root
Reversing from left subtree and
going to right.

Similarly here (25) and@ would be
printed and then moving to its right
subtree.

Here print order is (35), @, (39) and
at last root 30.
The order is given by

(d) 15, 10, 23, 25, 20, 35, 42, 39, 30

Q.30 (b)
By the logic of the algorithm it is
clear that it is an attempt to
implement Binary Search. So option
c is eliminated. Let us now check for
options a and d. A good way to do
this is to create small dummy
examples (arrays) and implement
the algorithm as it is. One may make
any array of choice. Running
iterations of the algorithm would
indicate that the loop exits when the
x is not present. So option A is
wrong. Also, when x is present, the
correct index is indeed returned. d is
also wrong.
Correct answer is b. It is a correct
implementation of Binary Search.

Q.31 (a)

Q.32 (1)
int print_subtrees_size_4(node *n)
{

int size=0;
if(node==null)
return 0;
size=print_subtrees_size_4(n
ode>left)+print_subtrees_siz
e_4(node->right)+1;
if(size==4)
printf("this is a subtree of
size 4");
return size;

}
The above function on taking input
the root of a binary tree prints all
the subtrees of size 4 in O(n) time
so a=1 , b=0 and then a+10*b=1

Q.33 (a)
The In-order Traversal of Ternary
Tree is done as follows:

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Left  Root Middle Right
So the nodes are visited in
SQPTRWUV order

Q.34 (d)
Here, that condition is if (tree 
leftMostchild == Null)

 Which means if there is no left
most child of the tree (or the sub -
tree or the current nodes called in
recursion)

 Which means there is no child to
that particular node (since if
there is no left most child, there is
no child at all).

 Which means the node under
consideration is a leaf node.

 The function recursively counts,
and adds to value, whenever a
leaf node is encountered.

 The function returns the number
of leaf nodes in the tree

It can also be solved by taking a
sample tree and tracing the logic.

Q.35 (d)
In preorder traversal, the root lies at
the front. Thus, 30 is the root of the
binary search tree. All the elements
greater than 30 lie in the right
subtree. Repeat the above procedure
to construct the complete binary
search tree.
The complete binary search tree is
shown in the following figure

Q.36 (a)
The maximum number of nodes in a
binary tree of height h is 2h+1 -1.
The minimum number of nodes in a
binary tree of height h is h+1.

Q.37 (a)

In-order traversal of a BST is always
ascending.

Q.38 (b)
Once 35 is inserted into the heap,
two swaps are needed between 35,
15 and then 35, 30. The level order
of the final tree is 40, 35, 20, 10, 30,
16, 17, 8, 4, 15.

Q.39 (19)
The number of internal nodes =
Number of leaf nodes – 1.

Q.40 (d)
The swaps needed are (100, 15),
(100,50), (100,89).

Q.41 (b)

Q.42 (64)
Formula is 2n, here n is 6
26 = 64

Q.43 (b)
Deletion of element needs heapify
process which depends on depth of
tree i.e. So time complexity is O(d)
and it cannot be O(1) because they
are not constant number of
operations. It depends on depth of
the tree.

Q.44 (b)
Since there are 15 nodes, hence the
minimum height of the tree will be
3(when tree will be balanced).

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

The maximum height will be when
the tree is skew tree, which will give
rise to height 14.

Q.45 (b)
Pre order: 12, 8, 6, 2, 7, 9, 10, 16, 15,
19, 20
In order: 2, 6, 7, 8, 9, 10, 12, 15, 16,
17, 19, 20
Tree will be,

Post order will be
2, 7, 6, 10, 9, 8, 15, 17, 20, 19, 16, 12

Q.46 (c)

Post-order: 8, 9, 6, 7, 4, 5, 2, 3, 1
In-order: 8, 6, 9, 4, 7, 2, 5, 1, 3

The height of the binary tree above
is 4.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.1 Consider the following graph:

Among the following sequences
I. abeghf II. abfehg
III. abfhge IV. afghbe
Which are depth first traversals of
the above graph?
a) I, II and IV b) I and IV
c) II, III and IV d) I, III and IV

[GATE-2003]

Q.2 Let G = (V, E) be a directed graph
with n vertices. A path from vi to vj
in G is a sequence of vertices (vi , vi+1
, …. vj) such that (vk , vk+1) ∈ E for all
k in i through j – 1. A Simple path is
a path in which no vertex appears
more than once. Let A be an n × n
array initialized as follows

A[i, j] =
 1, if j , k E

0, otherwise





Consider the following algorithm:
for i = 1 to n
 for j = 1 to n

 for k = 1 to n
A[j , k] = max (A[j , k], A[j , i] +
A[i , k]);
Which of the following statements is
necessarily true for all j and k after
termination of the above algorithm?
a) A[j , k] ≤ n
b) A[j , k] ≥ n – 1, then G has a

Hamiltonian cycle
c) If there exists a path from j to k,

A[j , k] contains the longest path
length from j to k

d) If there exists a path from j to k,
every simple path from j to k
contains at most A[j , k] edges.

 [GATE-2003]

Q.3 Let T be a depth first search tree in
an undirected graph G. Vertices u
and v are leaves of this tree T. The
degrees of both u and v in G are at
least 2. Which one of the following
statements is true?
a) There must exist a vertex w

adjacent to both u and v in G
b) There must exist a vertex w

whose removal disconnects u
and v in G

c) There must exist a cycle in G
containing u and v

d) There must exist a cycle in G
containing u and all its
neighbours in G

 [GATE-2006]

Q.4 The Breadth First Search algorithm
has been implemented using the
queue data structure. One possible
order of visiting the nodes of the
following graph is

a) MNOPQR b) NQMPOR
c) QMNPRO d) QMNPOR

[GATE-2008]

Q.5 The most efficient algorithm for
finding the numbers of connected
components is an undirected graph
on n vertices and m edges has time
complexity.
a) θ(n) b) θ(m)
c) θ(m + n) d) θ(mn)

[GATE-2008]

GATE QUESTIONS(GRAPHS)

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.6 Let G be a graph with n vertices and
m edges. What is the tightest upper
bound on the running time of Depth
first search on G when G is
represented as an adjacency matrix?
a) θ(n) b) θ(n+m)
c) θ(n2) d) θ(m2)

[GATE-2014]

Q.7 Suppose depth first search is
executed on the graph below
starting at some unknown vertex.
Assume that a recursive call to visit
a vertex is made only after first
checking that the vertex has not
been visited earlier. Then the
maximum possible recursion depth
(including the initial call) is.........

a) 17 b) 18
c) 19 d) 20

[GATE-2014]

Q.8 Breadth First Search(BFS) is started
on a binary tree beginning from the
root vertex. There is a vertex t at a
distance four from the root. If t is
the n-th vertex in this BFS traversal,
then the maximum possible value of
n is_____

 [GATE-2016]

Q.9 G is an undirected graph with n
vertices and 25 edge such that each
vertex of G has degree at least 3.
Then the maximum possible value of
n is__

 [GATE-2017]

Q.10 Let G= (VE) be any connected
undirected edge- weighted graph.
The weights of the edges in E are
positive and distinct, consider the
following statements:

I. Minimum Spanning Tree of G is
always unique.

II. Shortest path between any two
vertices of G is always unique.

Which of the above statements is/
are necessarily true?
a) I only b) II only
c) Both I nor II d) Neither I nor II

 [GATE-2017]

Q.11 Let G be a simple undirected graph.
Let TD be a depth first search tree of
G. Let TB be a breadth first search
tree of G. Consider the following
statements.

(I) No edge of G is a cross edge with
respect to TD. (A cross edge in G is
between two nodes neither of which
is an ancestor of the other in TD).

(II) For every edge (u, v) of G, if u is
at depth i and v is at depth j in TB,
then ∣i − j∣ = 1.

Which of the statements above must
necessarily be true?

a) I only
b) II only
c) Both I and II
d) Neither I nor II

 [GATE-2018]

Q.12 Let G be a graph with 100! vertices,
with each vertex labelled by a
distinct permutation of the numbers
1, 2, …, 100. There is an edge
between vertices u and v if and only
if the label of u can be obtained by
swapping two adjacent numbers in
the label of v. Let y denote the
degree of a vertex in G, and z deno te
the number of connected
components in G. Then y + 10z =
_______ .
a) 109
b) 110
c) 119
d) none of these

 [GATE-2018]

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

http://d18khu5s3lkxd9.cloudfront.net/wp-content/uploads/2014/04/GATECS2014Q20.png

1 2 3 4 5 6 7 8 9 10 11 12

(d) (d) (b) (c) (c) (c) 19 31 16 (a) (a) (a)

ANSWER KEY:

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.1 (d)
In such type of questions, we need
to check the options so as to save
the time in the examination.
However, this is all depends upon a
practices and the regular way of
solving questions.
Considering the diagram, lets check
options:
Option l; abeghf
Search (a) = b add (b) a, b

I, III, IV are DFS traversals. But II is
not because once we visit f, either
we can visit h or g but not e.

Q. 2 (d)
With the given algorithm, we can
say that if there exists a path from j
to k, every simple path from j to k
contains at most A [j, k] edges
Now since A [j, k] =1, if (j, k) ∈ E and
A is n x n array and also the values
of i , j, k, are never 0.
There is a path from j to k and the
path will contain maximum of A (j, k)
edges.

Q. 3 (b)
Since they are leaves in DFS, they
must be separable by a vertex.

Q. 4 (c)
Option (a) is MNOPQR. It cannot be
a BFS as the traversal starts with M,
but O is visited before N and Q. In
BFS all adjacent must be visited
before adjacent of adjacent.

Option (b) is NQMPOR. It also
cannot be BFS, because here, P is
visited before O.

(c) and (d) match up to QMNP. We
see that M was added to the queue
before N and P (because M comes
before NP in QMNP). Because R is
M’s neighbor, it gets added to the
queue before the neighbor of N and
P (which is O). Thus, R is visited
before O.

Q.5 (c)
Assume n < m.
Now, time complexity of most
efficient algorithm for finding the
number of connected components in
an undirected graph on n vertical
and m edge can be found using
depth first search. The time
complexity is  (m+n).

Q.6 (c)
DFS visits each vertex once and as it
visits each vertex, we need to find all
of its neighbors to figure out where
to search next. Finding all its
neighbors in an adjacency matrix
requires O(V) time, so overall the
running time will be O(V2).

Q.7 (19)

Q.8 (31)
Maximum possible value happens
when we have complete tree and
our t node is the last leaf node at

EXPLANATIONS

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

height 4. So, 1+2+4+8+16 = 31st is
the t node.

Q.9 (16)
n ≤ ?
e =25
Now since each vertex has at least 3
degree
And 2e = Σdegree
i.e., 2e ≥3n

n ≤ 2e/3

n ≤
2 25

16.66
3




so n is at most 16.

Q.10 (a)
 Since all the edge weights are

unique, hence the minimum
spanning tree of the graph will
be unique.

 Shortest path between the two
vertices need not to be unique. A
counter example for the
statement can be ,
The path from

The path from 1 3V V can be

I. 1 2 3V V V :1 2 3   

II. 1 3V V :3

Hence the path is not unique

Q.11 (a)
There are four types of edges that

can yield in DFS. These are tree,

forward, back, and cross edges. In

undirected connected graph,

forward and back egdes are the

same thing. A cross edge in a graph

is an edge that goes from a vertex v

to another vertex u such that u is

neither an ancestor nor descendant

of v. Therefore, cross edge is not

possible in undirected graph.

So, statement (I) is correct.

For statement (II) take

counterexample of complete graph

of three vertices, i.e., K3 with XYZ,

where X is source and Y and Z are in

same level. Also, there is an edge

between vertices Y and Z, i.e., |i-j| =

0 ≠ 1 in BFS. So, statement became

false.

Option (A) is correct.

Q.12 (a)
There is an edge between vertices u
and v iff the label of u can be
obtained by swapping two adjacent
numbers in the label of v.
Then the set of swapping numbers
will be {(1, 2), (2, 3), ………..(9, 9)}

There will be 99 such sets, i.e.
number of edges = 99

and each vertex will have 99 edges
corresponding to it.

Say graph with 3! vertices, then
vertices will be like {1, 2, 3}, {1, 3, 2},
{2, 1, 3}, {2, 3, 1}…

Let’s pick vertex {123}, degree will
be 2 since it will be connected with
two other vertices {213} and {132}.

We can conclude that for n, degree
will be n-1.

So, degree of each vertex = 99 (as
said y)

As the vertices are connected
together, the number of connected
components formed will be 1 (as
said z).

 y+10z = 99+10(1) = 109

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.1 Given the following input (4322,
1334, 1471, 9679, 1989, 6171, 6173,
4199) and the hash function x mod
10. Which of the following
statements are true?
1. 9679, 1989, 4199 hash to the

same value.
2. 1471, 6171 hash to the same

value.
3. All elements hash to the same

value.
4. Each elements hashes to a

different value.
a) 1 only b) 2 only
c) 1 and 2 d) 3 and 4

[GATE-2004]

Q.2 The keys 12, 18, 13, 2, 3, 23, 5 and
15 are inserted into an initially
empty hash table of length 10 using
open addressing with hash function
h(k) = k mod 10 and linear probing.
What is the resultant hash table?
a) b)

0
1
2 2
3 23
4
5 15
6
7
8 18
9

0
1
2 12
3 13
4
5 5
6
7
8 18
9

c) d)

0
1
2 12
3 13
4 2
5 3
6 23
7 5
8 18
9 15

0
1
2 12,2
3 13,3,23
4
5 5,15
6
7
8 18
9

 [GATE 2009]

Statements for Linked Answer
Questions 3 and 4
A hash table of length 10 uses. Open
addressing with hash function h (k) = k
mod 10, and linear probing. After inserting
6 values into an empty hash table, the table
is as shown below.

0
1
2 42
3 23
4 34
5 52
6 46
7 33
8
9

Q.3 Which one of the following choices
gives a possible order in which the
key values could have been inserted
in the table?
a) 46, 42, 34, 52, 23, 33
b) 34, 42, 23, 52, 33, 46
c) 46, 34, 42, 23, 52, 33
d) 42, 46, 33, 23, 34, 52

[GATE 2010]

Q.4 How many different insertion
sequences of the key values using
the same hash function and linear
probing will result in the hash table
shown above?
a) 10 b) 20
c) 30 d) 40

[GATE 2010]

Q.5 Consider a hash table with 9 slots.
The hash function is h(k) = k mod 9.
The collisions are resolved by
chaining. The following 9 keys are
inserted in the order: 5, 28, 19, 15,
20, 33, 12, 17, 10. The maximum,
minimum, and average chain lengths
in the hash table, respectively, are
a) 3, 0, and 1 b) 3, 3, and 3
c) 4, 0, and 1 d) 3, 0, and 2

[GATE-2014]

GATE QUESTIONS(HASHING)

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.6 Consider a hash table with 100 slots.
Collisions are resolved using
chaining. Assuming simple uniform
hashing, what is the probability that
the first 3 slots are unfilled after the
first 3 insertions?
a) (97 × 97 × 97)/1003

b) (99 × 98 × 97)/1003

c) (97 × 96 × 95)/1003

d) (97 × 96 × 95)/(3! × 1003)
[GATE-2014]

Q.7 Which one of the following hash
functions on integers will distribute
keys most uniformly over 10
buckets numbered 0 to 9 for i
ranging from 0 to 2020?

a) h(i) i2 mod 10
b) h(i)= i3 mod 10
c) h(i)  (11*i2) mod10
d) h(i)= (12*i) mod10

[GATE-2015]

Q.8 Given a has table T with 25 slots that
stores 2000 elements, the load
factor α for T is____

[GATE-2015]

1 2 3 4 5 6 7 8

(c) (c) (c) (c) (a) (a) (b) 80

ANSWER KEY:

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q. 1 (c)
The solution can be achieved by
finding the hash values of the input.

Index Hash value
4322
1334
1471
9679
1989
6171
6173
4199

2
4
1
9
9
1
3
9

By the table above, it is observed
that statement 1 and statement 2
are correct.

Q.2 (c)
12 mod 10 = 2
18 mod 10 = 8
13 mod 10 = 3
2 mod 10 = 2 collision
(2 + 1) mod 10 = 3 again collision
(using linear probing)
(3 + 1) mod 10 = 4
3 mod 10 = 3 collision
(3 + 1) mod 10 = 4 again collision
(using linear probing)
(4 + 1) mod 10 = 5
23 mod 10 = 3 collision
(3 + 1) mod 10 = 4 collision
(4 + 1) mod 10 = 5 again collision
(5 + 1) mod 10 = 6
5 mod 10 = 5 collision
(5 + 1) mod 10 = 6 again collision
(6 + 1) mod 10 = 7
15 mod 10 = 5 collision
(5 + 1) mod 10 = 6, collision
(6 + 1) mod 10 = 7 collision
(7 + 1) mod 10 = 8 collision
(8 + 1) mod 10 = 9
So, resulting hash table

0
1
2 12
3 13
4 2
5 3
6 23
7 5
8 18
9 15

Q.3 (c)
In this method, we simply checking
the options by using linear probing
so, option (a) 46, 42, 34, 52, 23, 33,

0
1
2 42
3 52
4 34
5 23
6 46
7 33
8
9

According to
linear probing
this is hash table

Option (b) 34,
42, 23, 52, 33,
46

0
1
2 42
3 23
4 34
5 52
6 33
7 46
8
9

Hash table

Option (c) 46, 34,
42, 23, 52, 33

0
1
2 42
3 23
4 34
5 52
6 46
7 33
8
9

Hash table

EXPLANATIONS

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.4 (c)
Different insertion sequences of key
values using same hash function and
linear probing.
46, 34, 42, 23, 52, 33
No problem to enter 46, 34, 42, 23

0
1
2 42
3 23
4 34
5
6 46
7
8
9
To enter 52
there are 6
possible
options

52

0
1
2 42
3 23
4 34
5 52
6 46
7
8
9
After
entering 52,
we gate
hash table

Now, to enter 23 there are 5
possible options.
So, total =6× 5 = 30 possible options.

Q.5 (a)
The resulting hash table is

The maximum and minimum
lengths of chains are 3, 0
respectively.
The average length of chain =
(0+3+1+1+0+1+2+0+1) / 9 = 1

Q.6 (a)
Probability of 1st element occupying
one of 97 slots = 97 / 100
Probability of 2nd element occupying
one of 97 slots =97/100 [since
collision resolution is chaining]
Probability of 3rd element occupying
one of 97 slots= 97/100 [since
collision resolution is chaining]

Q.7 (b)
Based on the table below,
i i3 i3 mod 10
0
1
2
3
4
5
6
7
8
9

0
1
8
27
64
125
216
343
512
729

0
1
8
7
4
5
6
3
2
9

The numbers from 0 to 2020 are
equally divided in 10 buckets. But it
is not possible with squares. The
buckets 2,3,7,8 would be empty.

Q.8 (80)
Load factor = (no. of elements)/ (no.
of slots in table) = 2000 / 25 =80

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.1 Consider the following functions

f(n) = 3n n

g(n) =
n

2
nlog2

h(n) = n!
Which of the following is true?
a) h(n) is O(f(n))
b) h(n) is O(g(n))
c) g(n) is not O(f(n))
d) f(n) is O(g(n))

 [GATE-2000]

Q.2 Let s be a sorted array of n integers.
Let t(n) denotes the time taken for
the most efficient algorithm to
determine if there are two elements
with sum less than 1000 in s. Which
of the following statements is true?
a) t(n) is O(1)

b) 2n t(n) nlog n 

c)
2

n
nlog n t(n)

2

 
   

 

d)
n

t(n) =
2

 
 
 

 [GATE-2000]

Q.3 Let f(n) = 2n log n and g(n) = n
10(log n) be two positive functions of

n. Which of following statements is
correct?
a) f(n) = O(g(n)) and g(n) ≠ O(f(n))
b) g(n) = O(f(n)) and f(n) ≠ O(g(n))
c) f(n) ≠ O(g(n)) and g(n) ≠ O(f(n))
d) f(n) = O(g(n)) and g(n) = O(f(n))

 [GATE-2001]

Q.4 The running time of the following
algorithm
Procedure A (n)
If n ≤ 2 return (1) else return

  A n 
 

;

is best described by
a) O(n) b) O(log n)
c) O(log log n) d) O(1)

 [GATE-2002]

Q.5 Consider the following algorithm for
searching for a given number x in an
unsorted array A[l…n] having n
distinct values
1. Choose an i uniformly at random

from 1..n
2. If A[i] = x then stop else Goto 1;
Assuming that x is present A, what is
the expected number of
comparisons made by the algorithm
before it terminates?
a) n b) n - 1

c) 2n d)
n

2
 [GATE-2002]

Q.6 In a heap with n elements with the
smallest element at the root, the 7th

smallest element can be found in
time
a) θ(n log n) b) θ(n)
c) θ(log n) d) θ(1)

 [GATE-2003]

Q.7 The usual θ(n2) implementation of
Insertion Sort to sort an array uses
Linear search to identify the
position where an element is to be
inserted into the already sorted part
of the array. If, instead, we use
binary search to identify the
position, the worst case running
time will
a) remain θ(n2)
b) become θ(n(log n)2)
c) become θ(n log n)
d) become θ(n)

 [GATE-2003]

Q.8 Consider the following three claims:
I. (n + k)m = θ(nm), where k and m

are constants
II. 2n+1 = O(2n)
III. 22n+1 = O(2n)
Which of these claims are correct?

GATE QUESTIONS (ALGORITHM ANALYSIS &
ASYMPTOTIC NOTATION)

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

a) I and II b) I and III
c) II and III d) I, II and III

 [GATE-2003]

Q.9 The recurrence equation
T(1) = 1
T(n) = 2T(n - 1) + n , n ≥ 2
Evaluates to
a) 2n+1 – n - 2 b) 2n - n
c) 2n+1 – 2n - 2 d) 2n + 2

[GATE-2004]

Q.10 The time complexity of the following
C function is (assume n > 0)
int recursive (int n)
if (n == 1)

return (1);
else
return (recursive (n - 1) + recursive
(n – 1);
}
a) O(n) b) O(n log n)
c) O(n2) d) O(2n)

 [GATE-2004]

Q.11 Let A [1,…,n] be an array storing a
bit (1 or 0) at each location, and
f(m) is a function whose time
complexity is θ(m). Consider the
following program fragment written
in a C like language:

counter = 0
for (i=1; i<n; i++)
{

if(A[i]==1)counter ++;
else {
f(counter);
counter = 0;
}

}
The complexity of this program
fragment is

a)  2n .

b)    2nlogn andO n

c)  n

d)  O n

 [GATE-2004]

Q.12 The time complexity of computing
the transitive closure of a binary
relation on a set of n elements is
known to be
a) O(n) b) O(n log n)

c) O(3/2n) d) O(n3)
 [GATE-2005]

Statements for Linked Answer Question
13 and 14
Consider the following C function:
Double foo (int n) {

int i;
double sum;
If (n==0) return 1.0;
else {

sum =0.0;
for (i=0; i<n; i++)

sum +=foo(i);
return sum;

}
}

Q.13 The space complexity of the above
function is
a) O(1) b) O(n)
c) O(n!) d) O(n3)

 [GATE-2005]

Q.14 Suppose we modify the above
function foo () and store the values
of foo (i), 0≤i<n, as and when they
are computed. With this
modification, the time complexity
for function foo () is significantly
reduced. The space complexity of
the modified function would be
a) O(1) b) O(n)
c) O(n2) d) O(n!)

 [GATE-2005]

Q.15 Suppose

 
n

T n 2T n,
2

 
  

 
   T 0 T 1 1 

Which one of the following is false?

a)    2T n O n

b)    T n nlogn 

c)    2T n n

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

d)    T n O nlogn

[GATE-2005]
Q.16 Give two arrays of numbers 1 na ,....,a

and 1 nb ,....,b where each number is 0

or 1, the fastest algorithm to find the
largest span (i, j) such that

i i 1 j i i 1 ja a ... a b b .. b ,        or

report that there is not such span,

a) Takes  nO 3 and n(2) time if

hashing is permitted

b) Takes  3O n and 2.5(n) time in

the key comparison model

c) Takes  n time and space

d) Takes  O n time only if the

sum of the 2n elements is an
even number

[GATE-2006]

Q.17 Consider the following recurrence:
T(n) = 2T([√n])+1, T(1) = 1
Which one of the following is true?
a) T(n) = θ(log log n)
b) T(n) = θ(log n)
c) T(n) = θ(√n)
d) T(n) = θ(n)

 [GATE-2006]

Q.18 A set x can be represented by an
array x[n] as follows X[i] =

1,ifi x

0,otherwise





Consider the following algorithm in
which x, y and z are Boolean arrays
of size n :
algorithm zzz (x [], y [], z []) {
int i;
for (i=0; i<n; ++i)
z[i] = (x[i] ~y[i]) (~x[i] y[i])
 }
The set Z computed by the
algorithm is

a)  X Y b)  X Y

c) (X–Y)(Y–X) d)(X–Y)(Y-X)
 [GATE-2006]

Q.19 An element in an array X is called a
leader, if it is greater than all
elements to the right of it in X. The
best algorithm to find all leaders in
an array
a) Solves it in linear time using a

left to right pass of the array
b) Solves it in linear time using a

right to left pass of the array
c) Solves it using divide and

conquer in time θ(nlog n)
d) Solves it in time θ(n2)

 [GATE-2006]

Q.20 Consider the following C program
fragment in which i , j and n are
integer variables.
for(i = n , j = 0; i > 0; i /= 2, j += i);
Let val (j) denotes the value stored
in the variable j after termination of
the for loop. Which one of the
following is true?
a) val (j)=θ(log n) b) val (j)=θ(n)
c) val (j)=θ(n) d) val (j)=θ(n log n)

[GATE-2006]

Q.21 Which one of the following in place
sorting algorithms needs the
minimum number of swaps?
a) Quick sort b) Insertion sort
c) Selection sort d) Heap sort

 [GATE-2006]

Q.22 Consider the polynomial p(x) = a0 +
a1x + a2x2 + a3x3, where ai ≠ 0, i.
The minimum number of
multiplication needed to evaluate p
on the input x is
a) 3 b) 4
c) 6 d) 9

[GATE-2006]

Q.23 Consider the following C code
segment:
int IsPrime (n)
{
int i, n;

for (i=2; i<=sqrt (n); i++)
if (n% i == 0)

{

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

printf(“Not Prime\n”); return 0;
}

return 1;
}
Let T(n) denotes the number of
times the for loop is executed by the
program on input n. Which of the
following is true?
a) T(n) = O(√n) and T(n) =  (√n)
b) T(n) = O(√n) and T(n) =  (1)
c) T(n) = O(n) and T(n) =  (√n)
d) None of these

 [GATE-2007]

Q.24 What is the time complexity of the
following recursive function?
int DoSomething (int n) {
it (n <= 2)
return 1;
else
return (DoSomething (floor
(sqrt (n))) + n);
 }

a)  (2n) b) (n 2log n)

c)  (2log n) d) (2log 2log n)

[GATE-2007]

Q.25 In the following C function let n ≥ m
int gcd (n, m)

{
if (n % m == 0) return m;
n = n % m;
return gcd (m, n);
}

How many recursive calls are made
by this function?
a)  (2log n) b)  (n)

c)  (2log 2log n) d)  (√n)

[GATE-2007]

Common Data for Questions 26 and 27
Consider the following C functions:
int f1 (int n)
{

if (n == 0 || n ==1)
 return n;
else
return (2*f1(n-1) + 3*f1(n-

 2));
}
int f2 (int n)
{
int i;
int X[N], Y[N], Z[N];
X[0] = Y[0] = Z[0] = 0;
X[1] = 1; Y[1] =2; Z[1] =3;
for (i =2; i<=n; i++){

X[i] = Y[i-1] + Z[i-2];
Y[i] = 2*X[i];
Z[i] = 3*X[i];

}
return X[n];
}

Q.26 The running time of f1 (n) and f2 (n)
are
a)  (n) and  (n)

b)  (n2) and  (n)

c)  (n) and  (n2)

d)  (n2) and  (n2)
 [GATE-2008]

Q.27 f1 (8) and f2 (8) return the values
a) 1661 and 1640
b) 59 and 59
c) 1640 and 1640
d)1640 and1661

 [GATE-2008]

Q.28 We have a binary heap on n
elements and wish to insert n more
elements (not necessarily one after
another) into this heap. The total
time required for this is
a)  (log n) b)  (n)
c)  (n log n) d) (2n)

[GATE-2008]

Q.29 The minimum number of
comparisons required to determine
if an integer appears more than n/2
times in a sorted array of n integers
is
a) θ(n) b) θ(log n)
c) θ(log*n) d) θ(1)

 [GATE-2008]

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.30 Consider the following functions:

f(n) = n2

g(n) = n!

h(n) = lognn

Which of the following statements
about the asymptotic behaviour of
f(n), g(n), and h(n) is true?
a) f(n) = O(g(n)); g(n) = O(h(n))
b) f(n) =  (g(n)); g(n) =O(h(n))
c) g(n) = O(f(n)); h(n) = O(f(n))
d) h(n) = O(f(n)); g(n) = (f(n))

 [GATE-2008]

Q.31 The running time of an algorithm is
represented by the following
recurrence relation

n,n 3

T(n) n
T cn,otherwise

3




   
 

 

a) θ(n) b) θ(n log n)

c) θ(2n) d) θ(2n log n)
[GATE-2009]

Q.32 Two alternative packages A and B
are available for processing a
database having 10k records.
Packages A requires 0.0001n2 time
units and package B requires

1010 logn n time units to process n

records. What is the smallest value
of k for which package B will be
preferred over A?
a) 12 b) 10
c) 6 d) 5

 [GATE-2010]

Q.33 Let W(n) and A(n) denote
respectively , the worst case and
average case running time of an
algorithm executed on an input size
n. Which of the following is always
TRUE?
a) A(n) = (W(n)) b)A(n)= (W(n))

c) A(n) = O(W(n)) d) A(n)= o(W(n))

[GATE-2012]

Q.34 Consider the following functions

int unknown (int n){
int i , n , k =0;
for (i = n/2 , i <= n; i++)
for (j = 2; j <= n; j = j * 2)
k = k +n/2;
return (k);
}
The return value of the function is

a) 2θ(n) b) 2θ(n logn)

c) 3θ(n) d) 3θ(n logn)

 [GATE-2013]

Q.35 Which one of the following correctly
determines the solution of
recurrence relation with T(1) = 1?
T(n) = 2 T(n/2) + logn
a) θ(n) b) θ(n logn)
c) θ(n2) d) θ(logn)

 [GATE-2014]

Q.36 The number of arithmetic
operations required to evaluate the
polynomial P(X) = X5 + 4X3 + 6X + 5
for a given value of X using only one
temporary variable.
a) 6 b) 7
c) 8 d) 9

[GATE-2014]

Q.37 Let an represent the number of bit
strings of length n containing two
consecutive 1s. What is the
recurrence relation for an?
a) an–2 + an–1 + 2n–2

b) an–2 + 2an–1 + 2n–2

c) 2an–2 + an–1 + 2n–2

d) 2an–2 + 2an–1 + 2n–2

 [GATE-2015]

Q.38 Consider the equality ∑i3 = X, for i=0
to n and the following choices for X
I) θ(n4) II) θ(n5)
III) O(n5) IV) Ω(n3)
The equality above remains correct
if X is replaced by
a) only I
b) Only II
c) I or III or IV but not II
d) II or III or IV but not I

 [GATE-2015]

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.39 Let f(n)=n and g(n)= n(1+sin n), where
n is a positive integer. Which of the
following statement is/are correct?
I. f(n) = O(g(n))
II. f (n)= Ω(g(n))
a) Only I b) Only II
c) Both I and II d) Neither I nor II

 [GATE-2015]

Q.40 A list contains n distinct elements.
The number of comparisons to find
an element in this list that is neither
maximum nor minimum is
a) θ(n log n) b) θ(n)
c) θ(log n) d) θ(1)

 [GATE-2015]

Q.41 Consider a carry look ahead adder
for adding two n-bit integers, built
using gates of fan-in at most two.
The time to perform addition using
this adder is
a) θ(1) b) θ(logn)
c) θ(sqrt(n)) d) θ(n)

 [GATE-2016]

Q.42 The given diagram shows the
flowchart for a recursive function
A(n). Assume that all statements,
except for the recursive calls, have
O(1) time complexity. If the worst
case time complexity of this function
is O(nα), then the least possible
value(accurate up to two decimal
positions) of α is_______.

[GATE-2016]

Q.43 In an adjacency list representation
of an undirected simple graph G =
(V, E), each edge (u, v) has two
adjacency list entries: [v] in the
adjacency list of u, and [u] in the
adjacency list of v. These are called
twins of each other. A twin pointer
is a pointer from an adjacency list
entry to its twin. If |E| = m and |V| =
n, and the memory size is not a
constraint, what is the time
complexity of the most efficient
algorithm to set the twin pointer in
each entry in each adjacency list?
a) θ(n2) b) θ(n+m)
c) θ(m2) d) θ(n4)

[GATE-2016]

Q.44 Consider the following C function:
float f (flat x, int y) {

float p, s; int i;
for (s=1, p=1,i=1; i<y; i++) {

p*=x/i;
s+=p;

}
return s;

}
For large values of y, the return
value of the function f best
approximates
a) xy b) ex

c) in (1+x) d) xx

 [GATE 2003]
Q.45 What does the following algorithm

approximate?
x = m;
y = 1;
while (x – y >){

x = (x+ y)/2;
Y = m/x;

}
Print (x);
a) log m b) m2

c) m1/2 d) m1/3

[GATE 2005]

Q.46 Consider the following segment of
C-code
int j, n;

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

j = 1;
while (j <=n)
j= j*2;
The number of comparisons made in
the execution of the loop for any n>
0 is
a) CEIL(log2 n) +1
b) n
c) CEIL(log2 n)
d) FLOOR(log2 n)+ 1

 [GATE 2007]

Q.47 Consider the following function.
int unknown (int n){
int i, j, k = 0;
for (i = n / 2; 1 < = n; i++)
for (j = 2; j < = n; j = j * 2)
k = k + n / 2;
return (k) :
}
The return value of the function is
a) θ(n)2 b) θ (n2logn)
c) θ(n)3 d) θ (n3logn)

 [GATE-2013]

Q.48 Suppose we have a balanced binary
search tree T holding n numbers.
We are given two numbers L and H
and wish to sum up all the numbers
in T that lie between L and H.
Suppose there are m such numbers
in T. If the tightest upper bound on
the time to compute the sum is O(na
logbn + mc logdn), the value of a+
10b + 100c + 1000d is ____

 [GATE 2014]

Q.49 An algorithm performs (logN)1/2
find operations, N insert operations,
(logN)1/2 delete operations, and
(logN)1/2 decrease-key operations
on a set of data items with keys
drawn from a linearly ordered set.
For a delete operation, a pointer is
provided to the record that must be
deleted. For the decrease-key
operation, a pointer is provided to
the record that has its key
decreased. Which one of the

following data structures is the most
suited for the algorithm to use, if the
goal is to achieve the best total
asymptotic complexity considering
all the operations?
a) Unsorted array
b) Min-heap
c) Sorted array
d) Sorted doubly linked list

[GATE 2015]

Q.50 Consider the following C function.
int fun1 (int n)
{
int i, j, k, p, q = 0;
for (i = 1; i<n; ++i)
{
 p = 0;
 for (j=n; j>1; j=j/2)
 ++p;
 for (k=1; k<p; k=k*2)
 ++q;
}
return q;
}
Which one of the following most
closely approximates the return
value of the function fun1?
a) n3 b) n(logn)2

c) nlogn d) nlog(logn)
 [GATE 2015]

Q.51 Consider the following functions
from positive integers to real
numbers:

2

100
10, n,n log n,

n
Tire CORRECT arrangement of the
above functions in increasing order
of asymptotic complexity is:

a) 2

100
log n, ,10, n,n

n

b) 2

100
,10log n, n,n

n

c) 2

100
10, , n,log n,n

n

d) 2

100
,log n,10, n,n

n

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

[GATE -2017]

Q.52 Consider the recurrence function

n 22T(n) 1,
T(n)

0 n 22

 
 

 

Then T(n) in terms of  notation is
a) (loglogn) b) (logn)

c) (n) d) (n)

 [GATE -2017]

Q.53 Consider the following C function.
int fun {int n)
{
 int i.j.;
 for (i=1;i< = n;i++)
 {
 for (j=1;j<n;j+ = i)
 {

Printf(“%d”, i , j);
}

 }
 }

Time complexity of fun in terms of
 notation is

a) (n n) b) 2(n)

c) (nlogn) d) 2(n logn)

 [GATE -2017]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(d) (a) (b) (c) (a) (c) (a) (a) (a) (d) (c) (d) (b) (b) (c)

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

(c) (b) (d) (b) (c) (c) (a) (b) (d) (a) (b) (c) (b) (b) (d)

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

(a) (c) (c) (b) (a) (b) (a) (c) (d) (d) (b) 2.32 (b) (b) (c)

46 47 48 49 50 51 52 53

(c) (b) 110 (a) (d) (b) (b) (c)

ANSWER KEY:

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q. 1 (d)
f(n) = 3n n

g(n) =
n
2n log2 = n n

So f(n) = O(g(n)) and g(n) = O(f(n))

Q. 2 (a)
Let array be sorted in ascending
order, if sum of first two elements is
less than 1000 then there are two
elements with sum less than 1000
otherwise not. For array sorted in
descending order we need to check
last two elements. For an array data
structure, number of operations are
fixed in both the cases and not
dependent on n, complexity is O(1)

Q. 3 (b)
f(n)=n2 log n
g(n) =n(log n)10
Any constant power of Log n is
asymptotically smaller than n.

Q. 4 (c)
T(n) = T(√n) + C1 if n > 2

Let n = 2m, T(n) = T(2m)

Let T(2m) = S(m)
From the above two, T(n) = S(m)
S(m) = S(m/2) + C1
S(m) = O(logm)= O(loglogn)
Now, let us go back to the original
recursive function T(n)
T(n) = S(m) = O(LogLogn)

Q. 5 (a)
Since the array is unsorted and since
the condition-
if A [i] = x then stop else go to 1.
So, the comparisons will be made till
the value of i reach n.
Therefore, before termination,
expected numbers of comparisons
made by algorithm is n.

Q. 6 (d)
The 7th smallest element must be in
first 7 levels. Total number of nodes
in any Binary Heap in first 7 levels is
at most 1 + 2 + 4 + 8 + 16 + 32 + 64
which is a constant. Therefore we
can always find 7th smallest
element in Θ(1) time.

Q. 7 (a)
If we use binary search then there
will be ⌈ log2(n!) ⌉ comparisons in
the worst case, which is Θ(n log n).
But the algorithm as a whole will
still have a running time of Θ (n^2)
on average because of the series of
swaps required for each insertion.

Q. 8 (a)
Statement 1 is correct
Consider k to be constant
f(n) = (n+k)m

→f(n) = (1+n)m
→f(n) = O(nm)
Statement 2 is correct
f(n) = 2n+1

→f(n) = 2n.2

→f(n) = O(2n)
Statement 3:
f(n) = 22n+1

→ f(n) = 22n.2
→ f(n) > 2n

Therefore, we can see that the only
statement 3 is false.

Q. 9 (a)
T(n)=2T(n−1)+n, n⩾2, T(1)=1

T(n)=n+2(n−1)+22(n−2)+⋯+2(n−1)
 (n−(n−1))

=n(1+2+⋯+2n−1)−(1.2+2.22+3.23+⋯
+(n−1).2n−1)

EXPLANATIONS

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

 =n(2n−1)−(n.2n−2n+1+2)

 =2n+1−n−2

Q. 10 (d)

T(n)=2T(n−1)+a is the recurrence
equation found from the pseudo
code .

Solving the Recurrence Equation by
Substitution Method

T(n)=2T(n−1)+a -------- Equation 1
T(n−1)=2T(n−2)+a
T(n−2)=2T(n−3)+a
We can re write Equation 1 as

 T(n)=2[2T(n−2)+a]+a
= 4T(n−2)+3a
= 4[2T(n−3)+a]+3a
= 8T(n−3)+7a…

= 2kT(n−k)+(2k−1)a --- Equation 2

On Substituting Limiting Condition

 T(1)=1 implies n−k=1⟹ k=n−1
Therefore Equation 2 becomes

= 2n−1+(2n−1−1)a

= O(2n)

Q. 11 (c)
The lines below
If (a[i] ==1) counter ++;
else {f (counter);counter =0;}
contains only one loop.
Now, as there is only one loop so it
will be computed using linear
complexity and we know that the
complexity will be θ (n).

Q. 12 (d)
In computer science the concept of
transitive closure can be thought of
as constructing a data structure that
makes it possible to answer
reachability questions. That is, can
one get from node a to other node b
in one or more hops? A binary
relation tells you only that node a is
connected to node b, and that node
b is connected to node c, etc. After
the transitive closure is constructed

in an O(1) operation one may
determine that node c is reachable
from node a.
warshall’s algorithm can be used to
construct the Transitive closure of
directed graphs (). In warshall’s
original formulation of the
algorithm, the graph is un-weighted
and represented by a Boolean
adjacency matrix. Then the addition
operation is replaced by logical
conjunction (AND) and the
minimum operation by logical
disjunction (OR). So, Applying
Warshall theorem, we get the time
complexity of computing transitive
closure of a binary relation on a set
of n elements. Warshall theorem,
time complexity is O (n3) which is
achieved as there are three nested
for loops with n frequency.

Q. 13 (b)
Note that the function foo() is
recursive. Space complexity is O(n)
as there can be at most O(n) active
functions (function call frames) at a
time.

Q. 14 (b)
As given, The value foo(i) is such
that 0≤ i <n. As per the condition the
longest size that can be stored is a
string of n bits Therefore, the space
complexity of the modified function
becomes O (n).

Q. 15 (c)

T(n) = 2T(n/2) + n
 = 2(2T(n/4) + n/2) + n
 = 4T(n/4) + n + n
 = 4T(n/4) + 2n
 = 4(2T(n/8) + n/4) + 2n
 = 8T(n/8) + n + 2n = 8T(n/8) + 3n
 = 8(2T(n/16) + n/8)+ 3n
 = 8T(n/16)+ n + 3n = 16T(n/16) + 4n

 ...
 = 32T(n/32) + 5n ...

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

http://www.geeksforgeeks.org/g-fact-86/

 = n*T(1) + log2(n)*n
 = O(n*log2(n))
 = O(n2) also.

So the false statement is

   2T n n

Q. 16 (c)
Given that each number is 0 or 1.
Now, to achieve
a1 + ai+1 + …. + ai = bi + bi+1 + ….. + bj

We need to find the sum of LHS and
RHS and then have to compare.
We need to do this from very
starting like first we need to check.
Whether a1 = b1
If not then whether a1+ a2 = b1 + b2
And so on………
This will taken n comparisons.
Therefore, the fastest algorithm to
find the largest span takes  (n)
time and space.

Q. 17 (b)
This question can be solved by first
change of variable and then Master
Method.

Let n = 2m

T(2m) = T(2(m/2)) + 1

Let T(2m) = S(m)
S(m) = 2S(m/2) + 1
Above expression is a binary tree
traversal recursion whose time
complexity is θ(m). You can also
prove using Master theorem.
S(m) = θ(m)
= θ(logn)
Now, let us go back to the original
recursive function T(n)
T(n) = T(2m) = S(m)
= θ(logn)

Q. 18 (d)
The condition given in the FOR loop
is z[i]=(x[i] ~y[i]) (~x[i]  y[i])
Now, we clearly can see that the
condition reflect the XOR operation
set obtained is(X∩Y’) ∪ (X’∩Y)
Since, the formula is X∩Y’ = X’∩Y

Result obtained is (X - Y) ∪ (Y - X)

Q. 19 (b)
Let array x contains n elements.
Solving the question in linear time
from right to left movement is
possible. Maintain max element
while moving from right to left and
every element is compared only
with max to decide whether it is
leader.

Q. 20 (c)
The frequency of the for loop can
given as
i = i/2
n= n/2
After termination of loop
val (j) = n + n/2+…..n/2 log2 n.
= 2n (1-1/2 log2 n)
= 2n (1-1/n)
= 2(n-1) = θ (n)

Q. 21 (c)
Out of the algorithms provided in
the option, selection sort takes
minimum number of swaps.
Working of selection sort can be
seen as−First find the smallest in the
array and exchange it with the
element in the first position, then
find the second smallest element
and exchange it with the element in
the second position, and continue in
this way until the entire array is
sorted.

Q. 22 (a)
The minimum number of
multiplication can be found out by
simplifying the given expression
p(x) = a0 + x(a1 + a2x + a3x2)
p(x) = a0 + x(a1 + (a3x + a2)x)
Here we can see three
multiplications
1. a3* x
2. x (a2+a3x)
3. x* (a1+x(a2+ a3x))

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

http://en.wikipedia.org/wiki/Master_theorem#cite_note-dartmouth-2

Q. 23 (b)
Best case occurs when the given
number is even, So T(n) =  (1)
(Best case)
Worst case occurs when the given
number is square of a prime
number.

T(n) = O (n) (worst case)

Q. 24 (d)
T (n) = T (√n) + C1 if n > 2
Let n = 2m, T (n) = T (2m)
Let T (2m) = S (m)
From the above two, T (n) = S (m)
S (m) = S (m/2) + C1
S (m) = O (log2 m)
= O(log2 log2 n)
Now, let us go back to the original
recursive function T(n)
T(n) = S(m) = O(Log2 Log2 n)

Q. 25 (a)
In algorithm you will see that the

remainder is 'cut' into half in every 2
steps. And since it cannot go less than 1,

there can be at most 2.[log2n]

steps/recursions. Each step/recursion

requires constant time, θ (1) so this can

be at most 2.[log2n].θ(1) time and

that's θ(log2 n)

Q. 26 (b)
As we can observe f(1) is a recursive
function, the recurrence equation
can be further observed as
T(n) = 2T(n-1) + 3T(n-2)
The solution to the equation is 2n.
Also, f2 has a loop from 2 to N.
Therefore, the average running time
comes out to be  (2n) and  (n).

Q. 27 (c)
For f(1), we are given that
(2*f1(n-1)+3*f1(n-2))
For f(2), we are given that
X[0] = Y[0] = Z[0] = 0
X[1] = 1; Y[1] = 2; Z[1] = 3
And for loop we are given that:

X[i] = Y[i-1] + Z[i-2];
Y[i] = 2*X[i];
Z[i] = 3*X[i];
Calculating f(1),
f(n) = (2* f1(n-1) + 3 * f1(n-2))
f(2) = (2* f1(2-1) + 3 * f1(2-2))
f(2) = (2 * 1+3*0) = 2
Similarly,
f(3) = 7
f(4) = 20
f(5) = 61
f(6) = 182
f(7) = 547
f(8) = 1640
Therefore, f1(8) returns 1640.
f2(8) will also return the same value
as f2(n) is the non-recursive
function of f1(n).

Q. 28 (b)
Following is algorithm for building a
Heap of an input array A.
BUILD-HEAP(A)
 heapsize := size(A);
 for i := floor(heapsize/2) downto 1

 do HEAPIFY(A, i);
 end for
END
Although the worst case complexity
looks like O(nLogn), upper bound of
time complexity is O(n)

Q. 29 (b)
Let’s consider an array

A[1]

A[2]
-
-
-
A[n]

Below is an array in which there is
an element i. This element i appears
more than n/2 time in array.
Generally, in a binary search,
expected case comparison is not
greater than Log (n+1) and if the
array is sorted then it takes  (1)
times.
But, given to us is the following:

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

1. The array is already sorted.
2. Integer appears more than n/2
times.
Therefore, the total number of
comparisons cannot be greater than
 (log n).

Q. 30 (d)
Since,
f(n) =2n

g(n) =n!
h(n) =nlog n

it can also be shown as
f(n) = O (2n)
g(n) = O (n!)
h(n) =O(n log n)
Now,
As per the asymptotic order of
function n log n ≤ C 2n for all n≥ n0
Let us assume C = 1 and n0 = 2
It comes out to be 2 log < 22
h(n) =O(f(n)) → one result
Now,
g(n) = n! & f(n) = 2n

As per the asymptotic order of
function
n! >C2n for all n >n0
24>24>16
g(n) =  (f(n)) →second result
Therefore, the two results are
h(n) = O(f(n));g(n)=  (f(n))

Q. 31 (a)
T(n) = cn + T(n/3)

= cn + cn/3 + T(n/9)
 = cn + cn/3 + cn/9 + T(n/27)

Taking the sum of infinite GP series.
The value of T(n) will be less than
this sum.
T(n) <= cn(1/(1-1/3))
 <= 3cn/2

or we can say
cn <= T(n) <= 3cn/2
Therefore T(n) = θ (n)
This can also be solved using Master
Theorem for solving recurrences.

Q. 32 (c)
Since, 10nlog10n ≤ 0.0001n2
Given n = 10k records. Therefore,
=10×(10k)log1010k ≤ 0.0001(10k)2
=10k+1k ≤ 0.0001 × 102k
=k ≤ 102k−k−1−4
=k ≤ 10k−5
Hence, value 5 does not satisfy but
value 6 satisfies.
6 is the smallest value of k for which
package B will be preferred over A.

Q. 33 (c)
The average case time complexity is
always less than or equal to the
worst case time complexity, Thus,
A(n) ≤ W(n) or A(n) = O(W(n)).
For example, for merge sort A(n) =
O(nlogn), W(n) = O(nlogn).
For quick sort, A(n) = O(nlogn) and
W(n) = O(n2)

Q. 34 (b)
The outer for loop executes n –
(n/2) + 1 = (n/2) + 1 times. The
inner for loop executes log2n times.
In the body of inner for loop (n/2) is
added to the value of k during each
execution. The initial value of

K =
2

n n
1 log n.

2 2

  
  

  

=
2

2n n
logn logn (n logn)

4 2

 
   

 

Q.35 (a)
By Master’s theorem case (i) T(n) is
O(n)

Q.36 (b)
By using Horner’s rule, expression
can be written as 5+x(6+x2(5+x2)
So there are 4 multiplications and 3
additions needed to evaluate the
polynomial.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.37 (a)
Give value for n and check.
a0= 0; a1 =0; a2= 1 [“11”]
a3=3 [“011”,”110”,”111”]
a4=8
[“0011”,”0110”,”0111”,”1101”,”1011
”,”1100”,”1110”,”1111”]
If we check for a3, we can see that
only (a) and (c) satisfy the value.
Among (a) and (c), only (a) satisfies
for a4

Q.38 (c)
Sum of cubes of first n natural
numbers is n2(n+1)2/4 = θ(n4)
So it clearly stays I, III, IV are true
but not II.

Q.39 (d)
The value of sine function varies
from -1 to 1.
For sin = -1 or any other negative
value, I becomes false.
For sin = 1 or any other negative
value, II becomes false

Q.40 (d)
We only need to consider any 3
elements and compare them. So the
number of comparisons is constant.
So the time complexity is θ (1).
Let us take an array {10, 20, 15, 7,
90}. Output can be 10 or 15 or 20
Pick any three elements. Let the
three elements be 10, 20 and 7.
Using 3 comparisons, we can find
that the middle element is 10.

Q.41 (b)
Look ahead carry generator gives
output in constant time if fan-in =
number of inputs.
For Example:
It will take O(1) to calculate
c4 = g3 + p3g2 + p3p2g1 +
p3p2p1g0 + p3p2p1p0c0c4
 = g3 + p3g2 + p3p2g1 + p3p2p1g0
+ p3p2p1p0c0,
 if OR gate with 5 inputs is present.

And, if fan-in != number of inputs
then we will have delay in each
level, as given below.
If we have 8 inputs, and OR gate
with 2 inputs, to build an OR gate
with 8 inputs, we will need 4 gates
in level-1, 2 in level-2 and 1 in level-
3. Hence 3 gate delays, for each
level.
Similarly an n-input gate
constructed with 2-input gates, total
delay will be O(log n).

Q.42 (a)
The time complexity of a recurrence
relation is the worst case time
complexity. First we have to find out
the number of function calls in
worst case from the flow chart.
The worst case will be when all the
conditions (diamond boxes) turn
out towards non-returning paths
taking the longest root. In the
longest path we have 5 function
calls. So the recurrence relation will
be–
A(n) = 5A(n/2) + O(1)
Solving this recurrence relation
using Master theorem –
a = 5 , b= 2 , f(n) =O(1) , nlogb a=
nlog2 5 (case 1 of master theorem)
A(n)=nlogba
value of log 25 is 2.3219, so, the best
option is option a.

Q.43 (b)
Twin Pointers can be setup by
keeping track of parent node in BFS
or DFS of graph.

Q. 44 (b)
We will consider an iteration
method since, the given function ‘/’
doesn't undergo recursion thus, we
have the following:

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

When, y tends to larger values like
infinity then i also tends to infinity.
Hence, for loop instrumentation
may also lead to infinity. The value
of y; is taken as large integer but not
infinite for the given function thus,
the value of f is $ and is obtained as
follows = 1+ x + x 2/2 + x3/6 + x4/24
+ x5/120 ……………. +∞
s= 1 + x + x2/2! + x3/3! + x4/4! +
x5/5! ……………. +∞
Therefore, s = ex

Q. 45 (c)
Let us suppose that m = 2
1st loop
x – y = 2
x = 3/2 = 1.5
y = 2/1.5 = 1.33
2nd loop
x – y = .16
x = 1.415
y = 1.413
And so on
And the loop will stop when x – y = 0
Thus, this program calculates
square root.

Q. 46 (c)
From the statement j = j*2 in the
code we get to know that j increases
in power of 2's. Lets say that this
statement executes x times then,

according to the question for while
loop 2x≤n
Therefore, x≤log2n
And also for termination of while
loop there will be an extra
comparison required. Thus, total
number of comparisons = x + 1
= CEIL (log2n) + 1

Q. 47 (b)
The return value of the function is
θ (n2logn)

The inner for loop for
n

1
2


iterations.
The inner for loop runs independent
of outer loop

And for each inner,
n

2
gets added to k.

n
#

2
  outer loops # inner loops

per outer loop
#inner loops =

     logn
log n 2 n

   
 

∴    2n n
1 . logn n logn

2 2

 
     
 

Q.48 (110)
It takes (log n) time to determine
numbers n1 and n2 in balanced
binary search tree T such that
1. n1 is the smallest number

greater than or equal to L and
there is no predecessor n’1 of n1
such that n’1 is equal to n1.

2. n2 is the largest number less
than or equal to H and there is
no successor of n’2 of n2 such
that is equal to n2.
Since there are m elements
between n1 and n2, it takes ‘m’
time to add all elements between
n1 and n2.

So time complexity is O (log n + m)
So the given expression becomes O
(n0 log1 n + m1 log0 n)
a = 0, b = 1, c = 1 and d =0

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

So a+ 10b+ 100c+1000d = 0 + 10*1
+ 100*1 + 1000*1 = 10 + 100 = 110

Q.49 (a)
The time complexity of insert in
unsorted array is O(1), min-heap is
O(logn), sorted array is O(n). Since
number of insertion operations are
asymptotically higher, unsorted
array is preferred.

Q.50 (d)
for (i = 1; i<n; ++i) // runs for n
times
{
p = 0;
For (j=n; j>1; j=j/2) // runs for logn
times
++p;
For (k=1; k<p; k=k*2) // runs for
loglogn times
++q;
}
Since the value returned by the
function is q, that approximates
n*log (log n)

Q.51 (b)

2

100
10log n n n

n
   so correct

answer is (b)

Q.52 (b)

T(n) 2T(n) 1  … (1)
2T(n) 2T(n) 1  …(2)

Substituting (2) in (1)
2T(n) 2.2T(n) 2 

2 2T(n) 2 T(n) 2  …(3)

32T(n) 2T(n) 2  … (4)

Substituting (4) in (3)
3 3T(n) 2 T(n) 2 

Running the same till K times
K KT(n) 2 T(n) K 

K n 2

2K log n

Solving this will give T(n) (logn)

Q.53 (c)
First loop will execute ‘n’ times and
the inner loop will execute  (log n)
times, hence the complexity will

(nlogn)

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.1 Randomized quick sort is an
extension of quick sort where the
pivot is chosen randomly. What is
the worst case complexity of sorting
n numbers using randomized quick
sort?
a) O(n) b) O(n log n)
c) O(n2) d) O(n!)

 [GATE-2001]

Q.2 Suppose there are logn   sorted

lists of n / logn   elements each.

The time complexity of producing a
sorted list of all these elements is
(Hint: Use a heap data structure)

a) O(log log n) b)  n logn

c)  nlogn d)  3/2n

 [GATE-2005]

Q.3 The median of n elements can be
found in O(n) time. Which one of the
following is correct about the
complexity of quick sort, in which
median is selected as pivot?
a) θ(n) b) θ(n log n)

c) θ (2n) d) θ(3n)
 [GATE-2006]

Q.4 Which of the following sorting
algorithms has the lowest worst-
case complexity?
a) Merge sort b) Bubble sort
c) Quick sort d) Selection sort

[GATE-2007]

Q.5 An array of n numbers is given,
where n is even number. The
maximum as well as the minimum of
these n numbers needs to be
determined. Which of the following
is true about the number of
comparisons needed?
a) At least 2n-c comparisons, for

some constant c, are needed

b) At most 1.5n-2 comparisons are
needed

c) At least n 2log n comparisons are

needed
d) None of the above

 [GATE-2007]

Q.6 Consider the Quick sort algorithm.
Suppose there is a procedure for
finding a pivot element which splits
the list into two sub-lists each of
which contains at least one-fifth of
the elements. Let T(n) be the
number of comparisons required to
sort n elements. Then
a) T(n) ≤ 2T (n/5) + n
b) T(n) ≤ T(n/5) + T(4n/5) + n
c) T(n) ≤ 2T (4n/5) + n
d) T(n) ≤ 2T (n/2) + n

 [GATE-2008]

Q.7 What is the number of swaps
required to sort n elements using
selection sort, in the worst case?
a) θ(n) b) θ(n log n)
c) θ(n2) d) θ(n2 log n)

 [GATE-2009]

Q.8 In quick sort, for sorting n elements,
the (n/4)th smallest elements is
selected as pivot using an O(n) time
algorithm. What is the worst case
time complexity of the quick sort?
a) θ(n) b) θ(n log n)

c) θ(2n) d) θ(2n log n)
 [GATE-2009]

Q.9 A list of n strings, each of length n, is
sorted into lexicographic order
using the merge-sort algorithm. The
worst case running time of this
computation is
a) O(nlog n) b) O(n2log n)
c) O(n2 + log n) d) O(n2)

 [GATE-2012]

GATE QUESTIONS (DIVIDE & CONQUER)

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.10 Let P be a Quick Sort Program to
sort numbers in ascending order
using the first element as pivot. Let
t1 and t2 be the number of
comparisons made by P for the
inputs {1, 2, 3, 4, 5} and {4, 1, 5, 3, 2}
respectively. Which one of the
following holds?
a) t1 = 5 b) t1 < t2
c) t1 > t2 d) t1 = t2

 [GATE-2014]

Q.11 The minimum number of
comparisons required to find
minimum and maximum of 100
numbers is ----

 [GATE-2014]

Q.12 Suppose P, Q, R, S, T are sorted
sequences having lengths 20, 24, 30,
35, 50 respectively. They are to be
merged into a single sequence by
merging together two sequences at a
time. The number of comparisons
that will be needed in the worst case
by the optimal algorithm for doing
this is _____

 [GATE-2014]

Q.13 You have an array of n elements.
Suppose you implement quick sort
by always choosing the central
element of the array as the pivot.
Then the tightest upper bound for
the worst case performance is
a) O(n2) b) O(n logn)
c) θ(n logn) d) O(n3)

 [GATE-2014]

Q.14 Which one of the following is the
recurrence equation for the worst
case time complexity of the
Quicksort algorithm for sorting n (≥
2) numbers? In the recurrence
equations given in the options
below, c is a constant.
a) T(n) = 2T (n/2) + cn
b) T(n) = T(n – 1) + T(0) + cn
c) T(n) = 2T (n – 2) + cn

d) T(n) = T(n/2) + cn
 [GATE-2015]

Q.15 Suppose you are provided with the
following function declaration in the
C programming language int
partition (int a [], int n); The
function treats the first element of a
[] as a pivot, and rearranges the
array so that all elements less than
or equal to the pivot is in the left
part of the array , and all elements
greater than the pivot is in the right
part. In addition, it moves the pivot
so that the pivot is the last elements
of the left part. The return value is
the number of elements in the left
part. The following partially given
function in the C programming
language is used to find the Kth
smallest element in an array a [] of
size n using the partition function
We assume k<=n
int kth _smallest (int a[], int n, int k)
{
int left _ end = partition (a,n) ;
if (left _ end+1 == k)

return a left _ end ;
if (left _ end +1 > k)

return
kth_smallest(………………………….);
else

return
kth_smallest(………………………….);
}
The missing argument lists are
respectively
a) (a, left_end, k) and (a+left_end+1,

n-left_end-1, k-left_end-1)
b) (a, left_end, k) and (a, n-left_end-

1, k left_end-1)
c) (a+left_end+1,n-left_end-1,k

left_end-1) and (a, left_end, k)
d) (a, n-left_end-1,k-left_end-1) and

(a, left_end, k)
 [GATE-2015]

Q.16 Assume that a merge sort algorithm
in the worst case takes 30 second

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

http://geeksquiz.com/quick-sort/
http://geeksquiz.com/quick-sort/

for an input of size 64. Which of the
following most closely approximates
the maximum input size of a
problem that can be solved in 6
minutes?
a) 256 b) 512
c) 1024 d) 2048

 [GATE-2015]

Q.17 What is the number of swaps
required to sort n elements using
selection sort, in the worst case?
a) θ(n) b) θ(n logn)
c) θ(n2) d) θ(n2 logn)

[GATE-2015]

Q.18 The worst case running times of
Insertion sort, Merge sort and Quick
sort, respectively, are:
a) Θ(nlogn), Θ(nlogn), and Θ(n2)
b) Θ(n2), Θ(n2), and Θ(nlogn)
c) Θ(n2), Θ(nlogn), and Θ(nlogn)
d) Θ(n2), Θ(nlogn), and Θ(n2)

 [GATE-2016]

Q.19 Assume that the algorithms
considered here sort the input
sequences in ascending order. If the
input is already in ascending order,
which of the following are TRUE?
I. Quicksort runs in θ (n2) time
II. Bubble sort runs in θ (n2) time
III. Merge sort runs in θ (n) time
IV. Insertion sort runs in θ (n) time
a) I and II only b) I and III only
c) II and IV only d) I and IV only

 [GATE-2016]

Q.20 Four matrices M1, M2, M3 and M4 are
of dimensions p×q, q×r, r×s and s×t
respectively can be multiplied in
several ways with different number
of total scalar multiplications. For
example, when multiplied as (M1 ×
M2) × M3) × M4) the total number of
scalar multiplications is pqr = rst =
prt. When multiplied as (((M1 × M2)
× M3) × M4) the total number of
scalar multiplications is and t=80,

then the minimum number of scalar
multiplications needed is
a) 248000 b) 44000
c) 19000 d) 25000

 [GATE -2011]

Q.21 Which one of the following is the
tightest upper bound that
represents the time? Complexity of
inserting an object into a binary
search tree of n nodes?
a) O (1) b) 0 (log n)
c) O (n) d) O (n log n)

 [GATE-2013]

Q.22 What are the worst-case
complexities of insertion and
deletion of a key in a binary search
tree?
a) θ(logn) for both insertion and

deletion
b) θ(n) for both insertion and

deletion
c) θ(n) for insertion and θ(logn) for

deletion
d) θ(logn) for insertion and θ(n) for

deletion
[GATE -2015]

Q.23 Match the algorithms with their
complexities:
List-I (Algorithm)
P) Towers of Hanoi with n disks
Q) Binary search given n sorted

numbers
R) Heap sort given n numbers at the

worst case
S) Addition of two n×n matrices
List- II (Time complexity)

i) 2(n) ii) (nlogn)

iii) n(2) iv) (logn)

a) P-(iii), Q-(iv), R- (i), S-(ii)
b) P-(iv), Q-(iii) , R-(i), S(ii)
c) P-(iii), Q-(iv), R-(ii), S-(i)
d) P-(iv), Q- (iii), R –(ii) S-(i)

 [GATE -2017]

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q. 1 (b)
Randomized quick sort can be
explained as; to avoid getting
slammed with a worst-case input,
pivots are picked randomly from the
set of possible pivots
The algorithm can be given as
QUICKSORTRAND (A, i , j)
1. if i ≤ j
2. then return
3. l← random number between i and j
4. k ←PARTITON (A, i ,j, l)
5. QUICKSORTRAND (A, i, k-1)
6. QUICKSORTRAND (A, k +1, j)
7. return
Worst case complexity of the Quick
sort is O(n2) but when it come to
randomized quick sort the worst
case complexity changes to O(n log
n)

Q. 2 (a)
As per the hint given along the
question use heap data structure.
It is also given that
There are [log n] sorted lists of

n / logn   element’s each

We know that construction of heap
takes O(log log n)time
Therefore in worst case, the time
complexity is O(n log log n)
(as element are n / logn  )

Q. 3 (b)
If we use median as a pivot element,
then the recurrence for all cases
becomes T(n) = 2T(n/2) + O(n)
The above recurrence can be solved
using case 2 of Master Method.

Q. 4 (a)
Lets the inputs be n. Now, consider
the table below defining the order of
t sorting algorithm worst case to be
case
Sorting
Algorithm

Worst case
complexity

Merge sort
Bubble sort
Quick sort
Selection sort

O(n log n)
O(n2)
O(n2)
O(n2)

Q. 5 (b)
Herein we apply dived and conquer
method. Divide and conquer method
is based on a basic idea of dividing
the original problem into two or
more sub-problems. These sub
problem, if possible are further sub
divided into sub problems.
Individually, each sub problem is
then solved using the similar
technique. The solutions of the sub
problems are then combined to
result in a final solution.
N is divided into 2 parts, n/2 and n/2
T(n) = 2T(n/2) + 2 for n>2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(b) (a) (b) (a) (b) (b) (a) (b) (b) (c) 148 358 (a) (b) (a)

16 17 18 19 20 21 22 23

(b) (a) (d) (d) (c) (c) (b) (c)

ANSWER KEY:

EXPLANATIONS

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

http://en.wikipedia.org/wiki/Master_theorem

T(n) = 3n/2-2
= 1.5n-2

Q. 6 (b)
As given, pivot element splits into
two sub list containing atleast 1/5th
element.
There are two lists; One list with
1/5th element and other are with
4/5th elements (1-1/5 =4/5).
For 1/5th elements number of
comparisons T(n/5) & for 4/5th
element number of comparisons
T(4n/5) and n is the time to split
Therefore, recurrence relation is
T(n)≤ T(n/5)+ T(4n/5)+ n

Q.7 (a)
In the selection sort, element are not
swapped with every move. The
algorithm finds out the smallest
element in the list and then is placed
in single swap. This determines that
is the worst case maximum swap
that could happen is n. Therefore,
the number of swap is θ (n).

Q. 8 (b)
According to the problem, the pivot
element is selected in a way that it
divides the array in 1/4th and 3/4 th
elements. So, we get the relation -
T(n)=T(n/4) +T(3n/4)+n
Solving the relation, we get O (n log
n). Therefore, the average
complexity of quick sort is O (n log
n).

Q. 9 (b)
When we are sorting an array of n
integers, Recurrence relation for
Total number of comparisons
involved will be,
T(n) = 2T(n/2) + n, where f(n)=n is
the number of comparisons in order
to merge 2 sorted subarrays of size
n/2.
T(n) = (nlog2n)

Instead of integers whose
comparison take O(1) time, we are
given n strings. We can compare 2
strings in O(n) worst case.
Therefore, Total number of
comparisons now will be (n2log2n)
where each comparison takes O(n)
time now.
In general, merge sort makes
(nlog2n) comparisons, and runs in
(nlog2n) time if each comparison
can be done in O (1) time.

Q.10 (c)
If elements are already sorted, Quick
Sort‘s behaves in worst case. In
every step of quick sort, numbers
are divided as per the following
recurrence.
T(n)=T(n-1)+O(n)

Q.11 (148)
Total number of comparisons
= 3n/2–2 =148

Q.12 (358)
The number of comparisons for
merging two sorted sequences of
length m and n is m+n-1.
Total numbers of comparisons are-
(44-1)+ (94-1) + (65-1) + (159-1)
=358

Q.13 (a)
The Worst case time complexity of
quick sort is O (n2). This will happen
when the elements of the input
array are already in sorted order
(ascending or descending),
irrespective of position of pivot
element in array.

Q.14 (b)
In worst case, the pivot element
goes to one of the extremes and
divides the array into two parts of
size n-1 and 0. So the recurrence
relation is
T(n) = T(n – 1) + T(0) + cn

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

http://geeksquiz.com/quick-sort/
http://geeksquiz.com/quick-sort/

Q.15 (a)
If k is smaller than the pivot element
we continue the process in the left
array. Otherwise we continue with
right array.

Q.16 (b)
Time complexity of Merge sort is
n*logn.
C*64log64= 30. So C=5/64
For time 6 minutes 5/64*n logn =
6*60
n logn = 72*64 = 512*9
So n=512

Q.17 (a)
In selection sort worst case, it is
required to do one swap in each
iteration. There will be n-1
iterations. So the number of swaps
are θ(n).

Q.18 (d)
Worst case time complexity of
Insertion sort is O(n2) when the
elements are in reverse sorted
order. Best, Average, Worst case
time complexity of Merge sort is O(n
logn).
Worst case time complexity of Quick
sort is O(n2).

Q.19 (d)
1. Quicksort will take worst case, if

the input is in ascending order
i.e θ(n2)

2. Insertion sort takes θ(n)

Q.20 (c)
M1× M2 × M3
For (M1 × M2) × M3
= (p × q × r) + (p× r × s)
= (10 × 100 × 20) + (10 × 20 × 5)
= 20000 + 1000 = 21000
M1 × (M2 × M3)
= {p × q × s) + (q × r × s)
= (10 × 100 × 5) + (100 × 20 × 5)
=5000 + 10000 = 15000
M1 (M2 × M3) < (M- l × M2) × M 3

This, (M1 × (M2×M3)) M4
= 15000 + p × s × t
=15000 + 10 × 5 × 80
=15000 + 4000 = 19000

Q. 21 (c)
The tightest upper bound that
represents the time complexity of
inserting an object into a binary
search tree with n nodes is 0 (n),
When inserting a new object
(element) into a binary search tree
we need to find its exact position in
the tree.
The time for this operation is upper
bounded by the height of the binary
tree.
Since, the tree is unbalanced,
balancing operation is not required
upon insertion so only time
consumed, is in finding the new
element’s right position in the tree.
Thus, the time conserved is in
finding the position which is equal
to the height of the tree.
Maximum height of the tree =0(n)

Q.22 (b)
Binary search tree can be skewed
tree where the height of tree is n-1.
So the worst case time complexity of
insertion and deletion will be θ(n).

Q.23 (c)
 Towers of Hanoi with n disks=2T(n-

1)+1= n(2)

 Binary search given n sorted
numbers = T (n/2)+1= (logn)

 Heap sort given n numbers at the
worst case =2T(n/2)+n= (nlogn)

 Addition of two n ×n matrices =

4T(n/2)+1= 2(n)

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.1 The following are the starting and
the ending times of activities A, B, C,
D, E, F, G and H respectively in
chronological order.
as bs cs ae ds ce es fs be de gs ee fe
hs ge he . Here xs denotes the
starting time and xe denotes the
ending time of activity X. we need to
schedule the activities in a set of
rooms available to us. An activity
can be scheduled in room only if the
room is reserved for the activity for
its entire duration. What is the
minimum number of rooms
required?
a) 3 b) 4
c) 6 d) 5

 [GATE-2003]

Q.2 What is the weight of a minimum
spanning tree of the following
graph?

a) 29 b) 31
c) 38 d) 41

 [GATE-2003]

Q.3 Let G = (V, E) be an undirected
graph with a sub graph G1 = (V1, E1).
Weights are assigned to edges of G
as follows

A single-source shortest path
algorithm is executed on the
weighted graph (V, E, W) with an

arbitrary vertex v1 of V1 as the
source. Which of the
following can always be inferred
from the path costs computed?
a) The number of edges in the

shortest paths from v1 to all
vertices of G

b) G1 is connected.
c) V1 forms a clique in G
d) G1 is a tree

 [GATE-2003]

Q.4 Suppose we run Dijkstra’s single
source shortest-path algorithm on
the following edge-weighted
directed graph with vertex P as the
source.

In what order do the nodes get
included into-the set of vertices for
which the shortest path distance is
finalized?
a) P, Q, R, S, T, U b) P,Q,R, U, S, T,
c) P, Q, R, U, T, S d) P,Q, T, R, U, S

[GATE-2004]

Statements for Linked Answer Question
5 and 6
We are given 9 tasks 1 2 9T ,T ,...T . The

execution of each task requires one unit of
time. We can execute one task at a time.
Each task Ti has a profit Pi and a deadline d i
. Profit Pi is earned if the task is completed
before the end of the di the unit of time.

GATE QUESTIONS (GREEDY METHOD)

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.5 Are all takes complemented in the
schedule that gives maximum
profit?
a) All tasks are completed
b) T1 and T6 are left out
c) T1 and T8 are left out
d) T4 and T6 are left out

 [GATE-2005]

Q.6 What is the maximum profit earned?
a) 147 b) 165
c) 167 d) 175

 [GATE-2005]

Q.7 Consider the following graph:

Which one of the following cannot
be the sequence of edges added, in
that order, to a minimum spanning
tree using Kruskal’s algorithm?
a) (a–b), (d–f), (b–f), (d–c), (d – e)
b) (a–b), (d–f), (d–c), (b–f), (d – e)
c) (d–f), (a–b), (d–c), (b–f), (d – e)
d) (d–f), (a–b), (b–f), (d–e), (d–c)

 [GATE-2006]

Q.8 To implement Dijkstra’s shortest
path algorithm on unweighted
graphs so that it runs in linear time,
the data structure to be used is
a) queue b) stack
c) heap d) B-Tree

 [GATE-2006]

Statements for Linked Answer Q.9 & Q.10
Suppose the letters a, b, c, d, e, f have

probabilities
1

2
,
1 1 1 1 1

, , , ,
4 8 16 32 32

respectively.

Q.9 Which of the following is the
Huffman code for the letter a, b, c, d,
e, f?
a) 0, 10, 110, 1110, 11110, 11111
b) 11, 10, 011, 010, 001, 000
c) 11, 10, 01, 001, 0001, 0000
d) 110, 100, 010, 000, 001, 111

 [GATE-2007]

Q.10 What is the average length of the
correct answer to Q. 9?
a) 3 b) 2.1875
c) 2.25 d) 1.9375

[GATE-2007]

Q.11

Dijkstra’s single source shortest
path algorithm when run from
vertex a in the above graph,
computers the correct shortest path
distance to
a) only vertex a
b) vertices a, e, f, g, h
c) vertices a, b, c, d
d) all the vertices

 [GATE-2008]

Q.12 Which of the following statements
is/are correct regarding Bellman-
ford shortest path algorithm?
P. Always finds a negative weighted

cycle, if one exists.
Q. Finds whether any negative

weighted cycle is reachable from
the source.

a) P only
b) Q only
c) Both P and Q
d) Neither P nor Q

 [GATE-2009]

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.13 Consider the following graph :

Which one of the following is not the
sequence of edges added to the
minimum spanning tree using
Kruskal’s algorithm?
a) (b, e)(e, f)(a, c)(b, c)(f, g)(c, d)
b) (b, e)(e, f)(a, c)(f, g)(b, c)(c, d)
c) (b, e)(a, c)(e, f)(b, c)(f, g)(c, d)
d) (b, e)(e, f)(b, c)(a, c)(f, g)(c, d)

 [GATE-2009]

Common Data for Questions 14 and 15
Consider a complete undirected graph with
vertex set (0, 1, 2, 3, 4). Entry ijW in the

matrix W below is the weight of the edge
(i,j)

0 1 8 1 4

1 0 1 2 4 9

8 1 2 0 7 3

1 4 7 0 2

4 9 3 2

W

 0

 
 
 
 
 
 
 
 

Q.14 What is the minimum possible
weight of a spanning tree T in this
graph such that vertex 0 is a leaf
node in the tree T?
a) 7 b) 8
c) 9 d) 10

 [GATE-2010]

Q.15 What is the minimum possible
weight of a path P from vertex 1 to
vertex 2 in this graph such that P
contain at most 3 edges?
a) 7 b) 8
c) 9 d) 10

 [GATE-2010]

Common data for questions 16 and 17
An undirected graph G(V , E) contains n(n >
2) nodes named v1, v2,….vn. Two nodes vp,
vf are connected if and only if 0 < |i – f| ≤ 2.
Each edge (vp, vf) is assigned a weight i + j.
A sample graph with n = 4 is shown below.

Q.16 What will be the cost of the
minimum spanning Tree (MST) of
such a graph with n nodes?
a) 1/12(11n2 – 5n) b) n2 – n + 1
c) 6n - 11 d) 2n + 1

[GATE-2011]

Q.17 The length of the path from v5 to v6
in the MST of previous question
with n=10 is
a) 11 b) 25
c) 31 d) 41

[GATE-2011]

Q.18 What is the time complexity of

Bellman-ford single source shortest
path algorithm on a complete graph
of n vertices?
a) θ(n2) b) θ(n2 log n)
c) θ(n3) d) θ(n3 log n)

 [GATE-2013]

Q.19 The graph shown below 8 edges
with distinct integer edge weights.
The minimum spanning tree (MST)
is of weight 36 and contains the
edges: {(A, C), (B, C), (B, E), (E, F),
(D, F)}. The edge weights of only
those edges which are in the MST
are given in the figure shown below.
The minimum possible sum of
weights of all 8 edges of this graph is
______________.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

[GATE-2015]

Q.20 Let G be a connected undirected
graph of 100 vertices and 300 edges.
The weight of a minimum spanning
tree of G is 500. When the weight of
each edge of G is increased by five,
the weight of a minimum spanning
tree becomes ____.

 [GATE-2015]

Q.21 Let G be a weighted connected
undirected graph with distinct
positive edge weights. If every edge
weight is increased by the same
value, then which of the following
statements is/are TRUE?
P: Minimum spanning tree of G

does not change
Q: Shortest path between any pair

of vertices does not change
a) P only b) Q only
c) Neither P nor Q d) Both P and Q

[GATE-2016]

Q.22 Let G be a complete undirected
graph on 4 vertices, having 6 edges
with weights being 1, 2, 3, 4, 5 and 6.
The maximum possible weight that
a minimum weight spanning tree of
G can have is ___.

 [GATE-2016]

Q.23 Let G be a weighted graph with edge
weights greater than one and G’ be
the graph constructed by squaring
the weights of edges in G. Let T and
T’ be the minimum spanning trees of
G and G’ respectively, with total
weights t and T’. Which of the
following statements is true?
a) T’=T with total weight t’=t2

b) T’=T with total weight t’<t2

c) T’≠T but total weight t’=t2

d) None of the above
 [GATE-2012]

Q.24 Consider the directed graph shown
in the figure below. There are
multiple shortest paths between
vertices S and T. Which one will be
reported by Dijkstra's shortest path

algorithm? Assume that in any
iteration, the shortest path to a
vertex v is updated only when a
strictly shorter path to V is
discovered.
a) SDT b) SBDT
c) SACDT d) SACET

[GATE-2012]

Q.25 Which one of the following is the
tightest upper bound that
represents the number of swaps
required sorting it numbers using
selection sort?
a) O (log n) b) O (n)
c) O (n log n) d) O (n2)

 [GATE-2013]

Q.26 A message is made up entirely of
characters from the set X=
{P,Q,R,S,T}. the table or probabilities
for each of he characters is shown
below:

Character Probability
P 0.22

Q 0.34
R 0.17
S 0.19

T 0.08
Total 1.00

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

If a message of 100 characters over
X is encoded using Huffman coding,
then the expected length of the
encoded message in bits is __________.

 [GATE-2017]

Q.27 Consider the following undirected

graph G:

Choose a value for x that will

maximize the number of minimum

weight spanning trees (MWSTs) of

G. The number of MWSTs of G for

this value of x is ________ .

a) 4 b) 5

c) 2 d) 3

[GATE-2018]

Q.28 Consider the weights and values of
items listed below. Note that there is
only one unit of each item.

The task is to pick a subset of these
items such that their total weight is
no more than 11 Kgs and their total
value is maximized. Moreover, no
item may be split. The total value of
items picked by an optimal
algorithm is denoted by Vopt. A
greedy algorithm sorts the items by
their value-to-weight ratios in
descending order and packs them
greedily, starting from the first item
in the ordered list. The total value of
items picked by the greedy
algorithm is denoted by Vgreedy.

The value of Vopt − Vgreedy is ______ .
a) 16 b) 8
c) 44 d) 60

[GATE-2018]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(b) (b) (b) (b) (d) (a) (d) (c) (a) (d) (c) (b) (d) (d) (b)

16 17 18 19 20 21 22 23 24 25 26 27 28
(b) (c) (c) 69 995 (d) 7 (b) (d) (b) 225 (a) (a)

ANSWER KEY:

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q. 1 (b)
An activity can be scheduled in a
room only if the room is reserved
for the activity for its entire
duration. The answer can be
obtained form
as bs cs ae ds ce es fs be de gs fe hs
ge he

You may have observed that in
between bs and be, two activities
ended, they are ae and ce.
The maximum is gap is in between
bs and be, which is 6 also 2 activities
ended so minimum number of
rooms required =6-2=4
We can verify the answer by solving
the question diagrammatically

as bs cs a, b,c starts

ds bs cs a ends

ds bs es c ends

ds bs es fs f also starts

es fs d and b ends

gs es fs g starts

gs e and f ends

gs hs h starts

g and h ends
thus vacating
the room

Q. 2 (b)
Minimum spanning tree connects all
the vertices considering the weights.

Here, the tree formed will be

This implies, weight of the minimum
spanning tree is 1 + 2 + 2 + 2 + 3 + 4
+ 4 + 5 + 8 = 31 .

Q. 3 (b)
When shortest path from v1 (one of
the vertices in V1) is computed. G1
is connected if the distance from v1
to any other vertex in V1 is greater
than 0, otherwise G1 is
disconnected.

Q. 4 (b)
The given diagram of the graph is to
be arranged as per the minimum
weight.
The steps are illustrated as below.
Step 1 Add P

Step 2 Insert Q

Step 3 Insert R

Step 4 Insert U

Step 5 Insert S

EXPLANATIONS

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Step 6 Insert T

Finally

Total distance=1+1+1+2+3=8
Therefore the sequence came out to
be P, Q, R, U, S, T .

Q. 5 (d)
As per given, the total tasks are 9.
Let’s consider R as empty initially;
Now, R is to be fed with the tasks.
The tasks will be allotted as per the
given profit and associated
deadlines. To maximize profit, we
can finish tasks in following order
T7, T2, T9, T5, T3, T8, T1.
T4 and T6 will be left out as the
maximum profit is achieved without
entering them.

Q. 6 (a)
To maximize profit, we can finish
tasks in following order T7, T2, T9,
T5, T3, T8, T1.
We get the maximum profit as 23 +
20 + 25 + 18 + 30 + 16 + 15 = 147

Q. 7 (d)
As given,
The algorithm of Kruskal algorithm
1. Set i = 1 and let E= { }
2. Select an edge ei of minimum
value not in Ei-1 such that Ti = < Ei-1
cup {ei} > is acyclic and define Ei =

Ei-1 cup {ei}. If no such edge exists,
let T=< Ei> and stop.
3. Replace i by i+1. Return to step 2.
It can be explained as- the kruskal
algorithm starting with a forest. The
forest consists of n tree. Every tree
consists only by one node. Now, in
every step of the algorithm, two
different tree of the forest are
connected to form a bigger tree. This
is how the quantity is decreased and
the size of tree increases. This is
done until we end up in a tree which
is the minimum spanning tree. In
every step the side with the lest cost
is chosen. If the chosen side
connects node which belong n the
same tree the side is rejected, and
not examined again because it could
produce a circle which will destroy
our tree.
Now, considering the options
Option (a)
(a-b)+(d-f)+(b-f)+(d- c)+(d-e)
=1+1+2+2+3=9
 Option (b)
(a-b)+(d-f)+(d-c)+(b-f)+(d-e)
=1+1+2+2+3=9
Option (c)
(d-f)+(a-b)+(d-c)+(b-f)+(d-e)
=1+1+2+2+3=9
Option (d)
(d-f)+(a-b)+(b-f)+(d-e)+(d-c)
=1+1+2+3+2=9
In the option (d), the edge with
more weight is coming first which is
against the algorithm.

Q. 8 (c)
Heap is used to implement
Dijakstra’s shortest path algorithm
on un-weighted graphs so that it
runs on linear time because of heap
discussed below.
Heap is a data structure that allows
the following:
1. Add: Heap allows the addition of

an element with some priority
associated with each element

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

2. Remove: The element with the
highest priority is removed and
returned.

3. Peak: Heap increases the priority
of an element to the highest
without removing the element
form the list.
Now, to implement a heap, take a
list of elements and according to
the priority. The highest priority
is O(n)time to implement the
Dijkstra s shortest path
algorithm on unweighted
graphs

Q. 9 (a)
We know that characters with high
probability need less number of bits
and vice-versa. The number of bits
required are 1, 2, 3, 4, 5, 5.
a, b, c, d, e, f, are represented by 0,
10, 110, 1110, 11110, 11111
Diagrammatically,

Q. 10 (d)
The formula used here is
Average length = Bits required ×

Probability
= 1/2 ×1 + 2 × 1/4 + 3 × 1/8 + 4 ×
1/16 + 5 × 1/32 + 5 × 1/32
= 1.9375

Q. 11 (c)
Dijkstra’s single source shortest
path is not guaranteed to work for
graphs with negative weight edges,
but it works for the given graph.
Let us see…

Let us run the 1st pass
b 1
b is minimum, so shortest distance
to b is 1.

After 1st pass, distances are
c 3, e -2.
e is minimum, so shortest distance
to e is -2

After 2nd pass, distances are
c 3, f 0.
f is minimum, so shortest distance to
f is 0

After 3rd pass, distances are
c 3, g 3.
Both are same; let us take g. so
shortest distance to g is 3.

After 4th pass, distances are
c 3, h 5
c is minimum, so shortest distance
to c is 3

After 5th pass, distances are
h -2
h is minimum, so shortest distance
to h is -2

Q. 12 (b)
The Bellman-Ford algorithm solves
the single source shortest paths
problem for a graph. This is done
with both positive and negative
edge weight. Lets pictorially
understand the concept of the
Bellman-ford algorithm.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Initialization

After Pass 1

After Pass 2

After Pass 3
The order of edges examined in each
pass
(t, x), (t, z), (x, t), (y, x), (y, t), (y, z),
(z, x), (z, s), (s, t), (s, y)

Q. 13 (d)
According to the kruskal algorithm,
on the graph G, the edges with the
smallest weight is selected first.
The weights of the edges are
(b, e) = 2
(e, f) =3
(b, c) =4
(a, c) =8
(f, g) =4
(c, d) =5
Therefore, according to the weights
above, we get the following graph

Q. 14 (d)

0 1 8 1 4

1 0 1 2 4 9

8 1 2 0 7 3

1 4 7 0 2

4 9 3 2

W

 0

 
 
 
 
 
 
 
 

The leaf node has vertex 0,
The tree is 0-1-2-3-4.This
determines that the weights of the
tree is 10.

Therefore, the minimum possible
weight of spanning tree T is
O+1+2+3+4=10.

Q. 15 (b)
The part from vertex 1 to vertex 2 is
1-0-4-2.
The length of the path is 1+0+4+3=8

Q. 16 (b)
Minimum spanning tree for 3 nodes
would be
Total weight= 3 + 4 = 7
Minimum spanning tree for 4 nodes
would be
Total weight= 3 + 4 + 6 = 13
Minimum spanning tree for 5 nodes
would be
Total weight= 3 + 4 + 6 + 8 = 21
Minimum spanning tree for 6 nodes
would be
Total weight= 3 + 4 + 6 + 8 + 10 = 31

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

If we check these in the given
options, option B satisfies the value.

Q. 17 (c)
Any MST which has more than 5
nodes will have the same distance
between v5 and v6 as the basic
structure of all MSTs (with more
than 5 nodes) would be following.
(v1) _ (v2) _ (v4) _ (v6) _ . . (more
even numbered nodes)

 |
 (v3)

 |
 (v5)
 |
(More odd numbered nodes)
Distance between v5 and v6
= 3 + 4 + 6 + 8 + 10 = 31

Q.18 (c)
The complexity of Bellman-Ford
single-source shortest path
algorithm is
θ(|V|.|E|) . In a complete graph with
n vertices, there are [n(n-1)]/2
edges. Thus, the complexity of
Bellman-Ford algorithm on a
complete graph is θ(n3).

Q.19 (69)
In every cycle, the weight of an edge
that is not part of MST must be
greater than or equal to weights of
other edges which are part of MST.
Since all edges weights are distinct,
the weight must be greater. So the
minimum possible weight of ED is 7,
the minimum possible weight of CD
is 16 and that of AB is 10. So the
minimum possible sum of weights is
69.

Q.20 (995)
Since there are 100 vertices, there
must be 99 edges in MST. If every
edge weight is increased by 5, the
total increase in MST weight = 99*5
= 495

The new weight of MST will
be=500+495 = 995.

Q.21 (d)
The edge weights in 2nd graph are
increased proportional to edge
weights in 1st graph. So the MST
does not change and also the
shortest path between pairs does
not change.

Q.22 (7)
The graph is as below. The weight of
MST is: 1+2+4 = 7

Q.23 (b)
In G’ the edge is square of the edge
in G. So the same edges which were
picked in construction of MST for G
will be picked for G’ also. So T and T’
are same. But the cost of T’ is not
equal to square of cost of T. Since
If the weights of edges in T are 1, 2,
3. So t=6.
Then weights of edges in T’ are 1, 4,
9. So t’=14.

Q. 24 (d)

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.25 (b)
The tightest upper bound that
represents the number of swaps
required to sort n numbers using
selection sort are 0 (n).
In an unsorted array in selection
sort we find the minimum value and
swap it with the value placed at the
index where the unsorted array
starts.
Hence, a number of swaps would be
done in order to place each element
in its sorted position. ”
There are n such iterations required
to sort n numbers
There would be n. O(1) swaps The
solution is (b).

Q. 26 225
In Huffman coding, we pick the least

two frequent (or probable)

character, combine them and create

a new node.

Looking at above tree structure,

Number of bits required by each:

P – 2

Q – 2

R – 3

S – 2

T – 3

Therefore, excepted length of the

encoded message

= 3*0.8 + 3*0.17 + 2*0.19 + 2 *0.22

+ 2*0.34=225

Q.27 (a)

To maximize the number of

minimum weight spanning trees of

G, the value of x will be 5 because it

will have two more choices for

corner vertex which will maximize

maximum number of MSTs.

Now, according to kruskal algorithm
for MST:

1. Edges with weights 1 and 3 will be
selected first,

2. Now bottom edge with weight 4 will
not be selected as will cause cycle on
MST,

3. both corner vertices have two-two
choices to select the vertices, so
these corner edges with weights 4
and 5 will resultant 2*2 = 4 MSTs.

Therefore, total number of MSTs are
2*2 = 4, which is answer.

Q.28 (a)

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

https://www.geeksforgeeks.org/greedy-algorithms-set-3-huffman-coding/

First we will pick item_1 (Value

weight ratio is highest). Second

highest is item_1, but cannot be

picked because of its weight. Now

item_3 shall be picked. item_2

cannot be included because of its

weight.

Therefore, overall profit by Vgreedy =

20+24 = 44

Hence, Vopt – Vgreedy = 60-44 = 16
So, answer is 16.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.1 In an unweighted, undirected
connected graph, the shortest path
from a node S to every other node is
computed most efficiently, in terms
of time complexity, by
a) Dijkstra’s algorithm starting from S
b) Warshall’s algorithm
c) Performing a DFS starting from S
d) Performing a BFS starting from S

 [GATE-2007]

Statements for Linked Answer
Questions 2 and 3
The subset-sum problem is defined as
follows: Given a set of n positive integers, S
= {

1 2 3 na ,a ,a ,....,a }, and positive integer W, is

there a subset of S whose elements sum to
W? A dynamic program for solving this
problem uses a 2-dimensional Boolean
with n rows and W+1 columns. X[i, j], 1 ≤ i
≤ n, 0 ≤ j ≤ W, is true if and only if there is a
subset of {

1 2 3 ia ,a ,a ,....,a } whose elements

sum to j.

Q.2 Which of the following is valid for 2
≤ i ≤ n and ia ≤ j ≤ W?

a) iX[i, j] X[i 1, j] X[i, j a]   

b) iX[i, j] X[i 1, j] X[i 1, j a]    

c) iX[i, j] X[i 1, j] X[i, j a]   

d) iX[i, j] X[i 1, j] X[i 1, j a]    

 [GATE-2008]

Q.3 Which entry of the array X, if true,
implies that there is a subset whose
elements sum to W?
a) X[1, W] b) X[n, 0]
c) X[n, W] d) X[n-1, n]

 [GATE-2008]

Q.4 The subset-sum problem is defined
as follows: Given a set s of n positive
integers and a positive integer W,
determine whether there is a subset
of S whose elements sum to W.

An algorithm Q solves this problem
in O(nW) time. Which of the
following statements is false?
a) Q solves the subset-sum problem

on polynomial time when the
input is encoded in unary

b) Q solves the subset-sum problem
in polynomial tome when the
input is
encoded in binary

c) The subset sum problem belongs
to the class NP

d) the subset sum problem is NP
hard

 [GATE-2008]

Statements for Linked Answer
Questions 5 and 6
A sub-sequence of a given sequence is just
the given sequence with some elements
(possibly none or all) left out. We are given
two sequence X[m] and Y[n] of lengths m
and n, respectively, with indices of X and Y
starting from 0.

Q.5 We wish to find the length of the
Longest Common Sub-sequence
(LCS) of X[m] and Y[n] as l(m, n),
where an incomplete recursive
definition for the function l(i, j) to
compute the length of the LCS of
X[m] and Y[n] is given below
l(i, j)= 0, if either I = 0 or j = 0
= expr 1, if i, j>0 and X[i-1] =[j-1]
= expr 2, if i, j>0 and X[i-1] =Y[j-1]
Which one of the following options
is correct?
a) expr1 = l(i-1, j) + 1
b) exp 1 = l(i,j – 1)
c) expr2 = max{(l(i-1, j), l(i, j-1)}
d) expr2 = max {l(i-1, j-1), l(i, j)}

 [GATE-2009]

Q.6 The values of l(i, j) could be
obtained by dynamic programming

GATE QUESTIONS (DYNAMIC PROGRAMMING)

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

based on the correct recursive
definition of l(I, j) of the form given
above, using an array L(M, N),
where M = m + 1 and N = n + 1, such
that L[i, j] = l(i, j).
Which one of the following
statements would be true regarding
the dynamic programming solution
for the recursive definition of l(i, j)?
a) All elements L should be

initialized to 0 for the values of
l(i, j) to be properly computed

b) The values of l(i, j) may be
computed in a row major order
or column major order of L(M, N)

c) The values of l(i, j) cannot be
computed in either row major
order or column major order of
L(M, N)

d) L(p, q) needs to be computed
before L[r, s] if either p<r or q <s

 [GATE-2009]

Q.7 Four matrices M1, M2, M3 and M4
of dimensions p × q , q × r , r ×s , s× t,
respectively, can be multiplied in
several ways with different number
of total scalar multiplications. For
example, when multiplied as ((M1 ×
M2) × (M3 × M4)), the total number
of scalar multiplications is pqr + rst
+ prt. When multiplied as ((M1 × M2)
×M3)× M4, the total number of scalar
multiplications is pqr + prs + pst. If p
= 10, q = 100, r = 20, s = 5 and t = 80,
then the number of scalar
multiplications needed is
a) 248000 b) 44000
c) 19000 d) 25000

 [GATE-2011]

Q.8 An algorithm to find the length of
the longest monotonically increasing
sequence of numbers in an array
A[0:n-1] is given below. Let Li
denote the length of the longest
monotonically increasing sequence
starting at index i in the array.
Initialize Ln-1 = 1.

For all i such that 0 ≤ i ≤ n – 2

i 1

1

1 L , if A[i]<A[i+1]
L

1, otherwise

 
  
 

Finally, the length of the longest
monotonically increasing sequence
in Max (L0, L1, L2… Ln+1), which of
the following statements is TRUE?
a) The algorithm uses dynamic

programming paradigm
b) The algorithm has a linear

complexity and uses branch and
bound paradigm.

c) The algorithm has a nonlinear
polynomial complexity and uses
branch and bound paradigm.

d) The algorithm uses divide-and-
conquer paradigm.

[GATE-2011]

Q.9 Consider two strings A=“qpqrr” and
B=“pqprqrp”. Let x be the length of
the longest common subsequence
(not necessarily contiguous) between
A and B and let y be the number of
such longest common subsequences
between A and B. Then x+10y=
_______.

 [GATE-2014]

Q.10 Given are some algorithms, and
some algorithm design paradigms.

1) Dijkstra’s shortest Path
2) Floyd-Warshall algorithm to

compute all pair shortest path
3) Binary search on a sorted array
4) Backtracking search on a graph

i) Divide and Conquer
ii) Dynamic programming
iii) Greedy design
iv) Depth-first search
v) Breadth-first search

Match the above algorithms on the
left to the corresponding design
paradigm they follow

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

a)1-i, 2-iii, 3-i, 4-v
b)1-iii, 2-iii, 3-i, 4-v
c)1-iii, 2-ii, 3-i, 4-iv
d)1- iii, 2- ii, 3- i, 4- v

 [GATE-2015]

Q.11 Consider the weighted undirected
graph with 4 vertices, where the
weight of edge {i,j} is given by the
entry Wij in the matrix W.

0 2 8 5

2 0 5 8
W

8 5 0 x

5 8 x 0

 
 
 
 
 
 

The largest possible integer value of
x, for which at least one shortest
path between some pair of vertices
will contain the edge with weight x
is _____.

 [GATE-2016]

Q.12 The Floyd-Warshall algorithm for
all-pair shortest paths computation
is based on
a) Greedy paradigm.
b) Divide-and-Conquer paradigm.
c) Dynamic Programming paradigm.
d) Neither Greedy nor Divide-and-

Conquer nor Dynamic
Programming paradigm

 [GATE-2016]

Q.13 Let A1, A2, A3, and A4 be four
matrices of dimensions 10×5, 5×20,
20×10, and 10×5 respectively. The
minimum number of scalar
multiplications required to find the
product A1A2A3A4 using the basic
matrix multiplication method
is___________.

[GATE-2016]

Q.14 What is the time complexity of
Bellman-Ford single source shortest
path algorithm on a complete graph
of n vertices?
a) θ(n)2 b) θ(n2 log n)

c) θ(n)3 d) θ(n3 log n)

 [GATE-2013]

Q.15 Consider the following table:
Match the algorithms to the design
paradigms they are based on.

a) (P) ↔ (ii) (Q)↔ (iii), (R) ↔(i)
b) (P) ↔ (iii),(Q) ↔(i),(R)↔(ii)
c) (P) ↔(ii),(Q) ↔(i),(R) ↔(iii)
d) (P) ↔(i),(Q) ↔(ii),(R) ↔(iii)

[GATE-2017]

Q.16 Assume that multiplying a matrix

G1 of dimension p×q with another

matrix G2 of dimension q×r requires

pqr scalar multiplications.

Computing the product of n

matrices G1G2G3 ….. Gn can be done

by parenthesizing in different ways.

Define GiGi+1 as an explicitly

computed pair for a given

paranthesization if they are directly

multiplied. For example, in the

matrix multiplication chain

G1G2G3G4G5G6 using

parenthesization

(G1(G2G3))(G4(G5G6)), G2G3 and G5G6

are only explicitly computed pairs.

Consider a matrix multiplication

chain F1F2F3F4F5, where matrices

F1,F2,F3,F4 and F5 are of dimensions

2×25,25×3,3×16,16×1 and 1×1000,

respectively. In the parenthesization

of F1F2F3F4F5 that minimizes the

total number of scalar

multiplications, the explicitly

computed pairs is/are

a) F1F2 and F3F4 only

b) F2F3 only

c) F3F= only

d) F1F2 and F4F5 only

[GATE-2018]

Algorithms Design Paradigms

(P) Kruskal (i) Divide and Conquer

(Q) Quicksort (ii) Greedy

(R) Floyed – Warshall (iii)Dynamic Programming

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q. 1 (d)
Dijkstra algorithm is not suitable as
it is good for weighted graph only.
Warshall’s algorithm is not suitable
as it is also good weighted graph
only.
Depth first search it is not suitable
to find the shortest path in team of
time complexity.
Breadth first search is the only
option.

Q. 2 (b)
The subset sum problem given
above is a NP complete problem as
this problem in which both NP
(verifiable in non-deterministic
polynomial time) and NP-hard (any
NP-problem can be translated into
this problem).
Now, here x is a Boolean array that
contains N rows and W+1 columns
Also ith row determines the
elements of subject S and jth column
determines the corresponding weight.

Given is 2< i < n and ai< j < W
Let’s subset S = {a1, a2 , a3, …. ai}

And weight is given as W
X[i, j] = X[i-1, j]v X[i-1, j- ai]

Q. 3 (c)
X[n, W] is true as in the previous
question, the weight W of subject S
is found which contains the n
elements.

Q. 4 (b)
Statement I is true. Q solve the
subset-sum problem in polynomial
time, when the input is encoded in
unary.
Statement II is false. It is given that
an algorithm Q solve the problem in
O(nW) time. Here, W is an integer so
it is definitely a constant so the
input must be encoded in binary. It
is can be said that Q solve the
problem in O(n) time.
Statement III is true. The subset sum
problem belongs to the class NP.
Statement IV is true. The subset sum
problem is NP-hard.

Q. 5 (c)
Here, we get the two correct
expressions on solving the given
expr 1 = l(i-1, j-1)+1
expr 2 =max (l (i-1, j), (l, j-1))
The answer available is the expr2.

Q. 6 (b)
The solution is continued form the
previous solution. The values of l (i,
j) may be computed in a row major
order or column major order of L
(M, N).

Q. 7 (c)
M1× M2 × M3
For (M1 × M2) × M3
= (p × q × r) + (p× r × s)
= (10 × 100 × 20) + (10 × 20 × 5)
= 20000 + 1000 = 21000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(d) (b) (c) (b) (c) (b) (c) (a) 34 (c) 11 (c) 1500 (c) (c) (c)

ANSWER KEY:

EXPLANATIONS

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

For M1 × (M2 × M3)
= {p × q × s) + (q × r × s)
= (10 × 100 × 5) + (100 × 20 × 5)
=5000 + 10000 = 15000
M1 (M2 × M3) < (M-l × M2) × M3
This, (M1 × (M2×M3)) M4
= 15000 + p × s × t
=15000 + 10 × 5 × 80
=15000 + 4000 = 19000

Q. 8 (a)
The algorithm is storing the optimal
solutions to sub-problems at each
point (for each i), and then using it
to derive the optimal solution of a
bigger problem. And that is dynamic
programming approach. And the
program has linear time complexity.

Now, branch and bound
comes when we explore all possible
solutions (branch) and backtracks
as soon as we find we won't get a
solution (in classical backtracking
we will retreat only when we won't
find the solution).In backtracking :
In each step, you check if this step
satisfies all the conditions
If it does: you continue generating
subsequent solutions
If not: you go one step backward to
check for another path
So, backtracking gives all possible
solutions while branch and bound
will give only the optimal one.

The given algorithm here is
neither backtracking nor branch and
bound. Because we are not
branching anywhere in the solution
space. And the algorithm is not
divide and conquer as we are not
dividing the problem and then
merging the solution as in the case
of merge sort (where merge is the
conquer step).

Q.9 (34)
A = “qpqrr” B = “pqprqrp”
The longest common subsequence
(not necessarily contiguous) between

A and B is having 4 as the length, so
x=4 and such common subsequences
are as follows:
1) qpqr
2) pqrr
3) qprr
So y = 3 (the number of longest
common subsequences) hence
x+10y = 4+10*3 = 34

Q.10 (c)
Dijkstra’s shortest path is Greedy
design. All pairs shortest path is
Dynamic programming problem.
Binary Search is Divide and Conquer
Depth first search is back tracking
approach

Q.11 (11)

Let vertices be A, B, C and D. x
directly connects C to D. The
shortest path (excluding x) from C
to D is of weight 12 (C-B-A-D). So to
include edge with x it must be at
least 11.

Q.12 (c)
All pairs shortest path algorithm is a
Dynamic programming problem
solving technique.

Q.13 (1500)
There are 5 possible cases
A1 (A2 (A3 A4)), A1 ((A2 A3) A4),
((A1 A2) A3) A4, (A1 (A2 A3)) A4,
(A1 A2)(A3 A4).
The scalar multiplications required
are 1750, 1500, 3500, 2000, 3000
respectively.
Minimum number of scalar
multiplications = 1500

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q. 14 (c)
The time complexity Of Bellman-
Ford single source shortest path
algorithm on a complete graph of n
vertices is 0 (n3).
Explanation: The time complexity of
Bellman-Ford algorithm on a graph
with n vertices and m edges is O(n3).
For a complete graph, m = nC2 = O
(n2), since there is an edge between
all pair of vertices.
Time complexity= O (n2. n)= O (n3)

Q.15 (c)
 Kruskal’s algorithms which is used

to find MST uses greedy approach.
 Quick sort uses divide and conquer

approach by dividing the input array
according to pivot element.

 Floyed Warshall which is used to
find all pair shortest path uses
dynamic programming.

Q.16 (C)
Matrix F5 is of dimension 1 X 1000,
which is going to cause very much
multiplication cost. So evaluating F5
at last is optimal.

Total number of scalar
multiplications are 48 + 75 + 50 +
2000 = 2173 and optimal
parenthesis is ((F1(F2(F3 F4)))F5).

As concluded F3, F4 are explicitly
computed pairs.

Option (C) is Correct.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.1 Let πA be a problem that belongs to
the class NP. Then, which one of the
following is true?
a) There is no polynomial time

algorithm for πA.

b) If πA can be solved
deterministically in polynomial
time, then P = NP

c) If πA is NP-hard, then it is NP-
complete.

d) πA may be undecidable.
 [GATE-2009]

Q.2 Suppose a polynomial time algorithm
is discovered that correctly computes
the largest clique in a given graph. In
this scenario, which one of the
following represents the correct
Venn diagram of the complexity
classes P, NP and NP Complete
(NPC)?

a)

b)

c)

d)

 [GATE-2014]

Q.3 Consider the decision problem 2-
CNF-SAT defined as follows:
{π | π is a satisfiable propositional
formula in CNF with at most two
literals per clause }
For example=(x1 ˅ x2) ⋀(x1 ˅ ~x3)
⋀(x2 ˅ x4) is a Boolean formula and
it is in 2-CNF-SAT.
The decision problem 2-CNF-SAT is
a) NP-Complete.
b) Solvable in polynomial time by

reduction to directed graph
reach ability.

c) Solvable in constant time since
any input instance is satisfiable.

d) NP-hard, but not NP-complete
 [GATE-2014]

Q.4 Consider two decision problems Q1,
Q2 such that Q1 reduces in
polynomial time to 3-SAT and 3 -
SAT reduces in polynomial time to
Q2. Then which one of following is
consistent with the above statement?
a) Q1 is in NP, Q2 in NP hard
b) Q2 is in NP, Q1 is NP hard
c) Both Q1 and Q2 are in NP
d) Both Q1 and Q2 are NP hard

 [GATE-2015]

GATE QUESTIONS (P & NP CONCEPTS)

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

1 2 3 4

(c) (d) (b) (a)

ANSWER KEY:

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q. 1 (c)
A problem which is in P, is also in
NP- so A is false. If problem can be
solved deterministically in
Polynomial time, then also we can't
comment anything about P=NP, we
just put this problem in P. So, B is
also false. C is TRUE because that is
the definition of NP-complete.

D is false because all NP
problems are not only decidable but
decidable in polynomial time using a
non-deterministic Turing machine.

Q.2 (d)
The most important open question
in complexity theory is whether the
P=NP, which asks whether
polynomial time algorithms actually
exist for NP-complete and all NP
problems (since a problem “C” is in
NP-complete, if C is in NP and every
problem in NP is reducible to C in
polynomial time). In the question it
is given that some polynomial time
algorithm exists which computes
the largest clique problem in the
given graph which is known NP-
complete problem. Hence P=NP=NP-
Complete.

Q.3 (b)
2-SAT is in P. This we can prove by
reducing 2-SAT to directed graph
reachability problem which is
known to be in P.

Q.4 (a)
Q1 reduces in polynomial time to 3-
SAT. So Q1 is in NP.
3-SAT reduces in polynomial time to
Q2. So Q2 is NP-hard. If Q2 can be
solved in P, then 3-SAT can be
solved in P, but 3-SAT is NP-
complete that makes Q2 NP-hard.

EXPLANATIONS

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.1 Let G be an undirected graph.
Consider a depth-first traversal of G,
and let T be the resulting depth-first
search tree. Let u be a vertex in G
and let v be the first new (unvisited)
vertex visited after visiting u in the
traversal. Which of the following
statements is always true?
a) {u, v} must be an edge in G, and u

is a descendant of v in T
b) {u, v} must be an edge in G, and v

is a descendant of u in T
c) {u, v} is not an edge in G then u is

a leaf in T
d) {u, v} is not an edge in G then u

and v must have the same parent
in T

 [GATE-2000]

Q.2 Consider any array representation
of an n element binary heap where
the elements are stored from index
1 to index n of the array. For the
element stored at index i of the
array(i ≤ n), the index of the parent
is

a) i – 1 b)
i

2

 
 
 

c)
i

2

 
 
 

 d)
(i +1)

2

 [GATE-2001]

Q.3 Consider an undirected unweighted
graph G. Let a breadth-first traversal
of G be done starting from a node r.
Let d(r, u) and d(r, v) be the lengths
of the shortest paths from r to u and
v respectively in G. If u is visited
before v during the breadth-first
traversal, which of the following
statements is correct?
a) d(r , u) < d(r , v)
b) d(r , u) > d(r , v)

c) d(r , u) ≤ d(r , v)
d) None of these

 [GATE-2001]

Q.4 The cube root of a natural number n
is defined as the largest natural
number m such that m3 ≤ n. The
complexity of computing the cube
root of n (n is represented in binary
notation) is
a) O(n) but not O(n0.5)
b) O(n0.5) but O(log n)k for any

constant k > 0
c) O((log n)k) for some constant k >

0 but not O((log log n)m) for any
constant m > 0

d) O((log log n)k) for some constant
k >0.5 but not O((log log n)0.5)

 [GATE-2003]

Statements for linked answer Questions
5 and 6
In a permutation a1….an of n distinct
integers, an inversion is a pair (a i, aj) such
that i < j and ai > aj

Q.5 If all permutations are equally likely,
what is the expected number of
inversions in a randomly chosen
permutation of 1…n2

a)
n(n 1)

2


b)

n(n 1)

4



c)
n(n 1)

4


d) 2n[log2 n]

[GATE-2003]

Q.6 What would be the worst case time
complexity of the insertion sort
algorithm, if the inputs are
restricted to permutations of 1…n
with at most n inversions?
a) θ(n2) b) θ(n log n)
c) θ(n1.5) d) θ(n)

[GATE-2003]

GATE QUESTIONS (MISCELLANEOUS CONCEPTS)

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.7 A program takes as input a balanced
binary search tree with n leaf nodes
and computes the value of a function
g(x) for each node x. If the cost of
computing g(x) is min (number of
leaf-nodes in left-subtree of x,
number of leaf-nodes in right-
subtree of x) then the worst-case
time complexity of the program is
a) θ(n) b) θ(n log n)
c) θ(n2) d) θ(n2 log n)

[GATE-2004]

Q.8 Suppose each set is represented as a
linked list with elements in arbitrary
order. Which of the operations
among union, intersection,
membership, cardinality will be the
slowest?
a) union only
b) intersection, membership
c) membership, cardinality
d) union, intersection

 [GATE-2004]

Q.9 Two matrices M1 and M2 are to be
stored in arrays A and B respectively.
Each array can be stored either in
row-major or column-major order
in contiguous memory locations.
The time complexity of an algorithm
to compute M1× M2 will be
a) best if A is in row-major, and B is

in column major order
b) best if both are in row-major

order
c) best if both are in column-major

order
d) independents of the storage

scheme
 [GATE-2004]

Q.10 A scheme for sorting binary trees in
an array X is as follows. Indexing of
X starts at 1 instead of 0. The root is
sorted at X[1]. For a node stored at
X[i], the left child, if any, is stored in
X[2i] and the right child, if any, in
X[2i + 1]. To be able to store any

binary tree on n vertices the
minimum size of X should be
a) log2n b) n
c) 2n + 1 d) 2n - 1

[GATE-2006]

Q.11 The number of elements that can be
sorted in θ(log n) time using heap
sort is
a) θ(1)

b)  θ logn

c) θ(log n / log log n)
d) θ(log n)

 [GATE-2013]

Q.12 Consider the directed graph given
below. Which one of the following is
TRUE?

a) The graph doesn’t have any
topological ordering

b) Both PQRS and SRPQ are
topological ordering

c) Both PSRQ and SPRQ are
topological ordering

d) PSRQ is the only topological
ordering

 [GATE-2014]

Q.13 The number of elements that can be
sorted in θ(logn) time using heap
sortis

a) θ (1) b)  θ logn

c)
log n

θ
log log n

 
 
 

 d) θ(logn)

 [GATE-2013]

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q. 1 (c)
G is an undirected graph. Now,
when G is traversed via depth first.
The resultant obtained is T (depth
first tree). V is the first vertex visited
after visiting u. Now, if u and v are
not connected, then no cycle is
formed and u is a leaf in T. However,
if u and v are connected, then a cycle
will be formed.

Q. 2 (b)
This is a basic question. We know
that to reach a node on level i, the
distance to the root is i-1. This
implies that if an element is stored
at index i of the array then, index of
the parent is floor (i/2).

Q. 3 (c)
Let’s, construct diagram of all the
possibilities of tree on the given
condition that u is visited before v in
the breadth first traversal

From, the diagrams, the statement
that is correct is d(r,u) < d(r,v)

Q. 4 (c)
We can simply do a binary search in
the array of natural numbers from
1..n and check if the cube of the
number matches n (i.e., check if
a[i]∗a[i]∗a[i]==n). This check takes
O(logn) time and in the worst case
we need to do the search O(logn)
times. So, in this way we can find the
cube root in O(log2n). So, options (a)
and (b) are wrong.

Now, a number is
represented in binary using logn bit.
Since each bit is important in finding
the cube root, any cube root finding
algorithm must examine each bit at
least once. This ensures that
complexity of cube root finding
algorithm cannot be lower than
logn. (It must be Ω(logn)). So (d) is
also false and (c) is the correct
answer.

Q. 5 (b)
Since, permutations are equally likely,
Expected number of inversions in a
randomly chosen permutation
=1/2(nC2)
=(1/2) n!(2!. (n-2)!

=1/2 .n(n-1) (n-2) 1 (2.(n-1)!)
=n(n-1)/4

1 2 3 4 5 6 7 8 9 10 11 12 13

(c) (b) (c) (c) (b) (d) (b) (d) (d) (d) (c) (c) (c)

ANSWER KEY:

EXPLANATIONS

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q. 6 (d)
Insertion sort runs in Θ(n + f(n))
time, where f(n) denotes the number
of inversion initially present in the
array being sorted. Therefore, the
worst case becomes O(n)

Q. 7 (b)
The recurrence relation for the
recursive function is
T(N) = 2 * T(N/2) + n/2
Where N is the total no. of nodes in
the tree.
T(N) = 2 * (2*T(N/2) + n/2) + n/2
= 4 * T(N/2) + 3(n/2)
Solve this till T(1) i.e. till we reach
the root.
T(N)=c* T(N / 2i) + (2*i - 1) * (n/2)
Where i = log(N)
= log((2n - 1) / 2)
O(c * T(N / 2^i) + (2*i - 1) * (n/2))
reduces to O((2*i - 1) * (n/2))
O((2*(log((2n - 1) / 2)) - 1) * (n/2))
...sub the value of i.
O(n * log(n))

Q. 8 (d)
Each set is given as a linked list.
The difference between the traversing
nature of linked list and set is that
linked list traverse in sequential
fashion while a set does not.
Due to this the traversal will begin
from start node and ends at root
node.
Now, considering options on the
same concept. Membership and
cardinality takes O(1) for an
element so they are faster than
intersection and union . therefore,
the traversing in a linked list form
star node to root is slowest in case
of union and intersection.

Q. 9 (d)
This is a trick question. Note that the
questions ask about time complexity,
not time taken by the program. for
time complexity, it doesn't matter

how we store array elements, we
always need to access same number
of elements of M1 and M2 to
multiply the matrices. It is always
constant or O(1) time to do element
access in arrays, the constants may
differ for different schemes, but not
the time complexity.

Q. 10 (d)
To find the minimum size of X, we
need to consider the worst case size
of the tree. The worst case is defined
as the case in which the single node
contains the date at each level of tree.
This can be further explained using
an example of worst case binary tree
for 3 data items:

With the example we can sum up
the concept in one line according to
which, for n vertices, n is the level of
tree required.
Memory required at each level=20

21 ,…. ,2n-1

Minimum size = 20 + 21 + …..+2 n-1
= 2n - 1

Q.11 (c)
The time complexity of heap sort for
sorting m elements is θ(mlogm).
Thus, time complexity to sort
(logn/log (logn) element is

logn logn
log

loglogn loglogn

  
  

  

=
logn

.[log logn log logn]
log logn

 
 

 

=
log logn

logn (logn)
log logn

 
   

 

Q.12 (c)
Topological ordering of a directed
graph is a linear ordering of its

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

vertices such that for every directed
edge uv from vertex u to vertex v, u
comes before v in the ordering.
Topological ordering is possible if
graph has no directed cycles.
a) As the given graph doesn’t

contain any directed cycles, it
has at least one topological
ordering. So option (A) is false

b) PQRS cannot be topological
ordering because S should come
before R in the ordering as there
is a directed edge from S to R.
SRQP cannot be topological
ordering, because P should come
before Q in the ordering as there
is a directed edge from P to Q

c) PSRQ and SPRQ are topological
orderings as both of them satisfy
the above mentioned topological
ordering conditions.

d) PSRQ is not the only one
topological ordering as SPRQ is
another possibility

Q. 13 (c)

 logn time using heap sort is

logn
θ

loglogn

 
 
 

Consider the number of elements is

k. Which can be sorted in  k logk

time.

Analyzing the options in decreasing
order of complexity sine we need a
tight bound i.e., θ

i.e.

     
logn

θ logn ,θ ,θ logn ,θ 1
loglogn

 
 
 

So it k ∈ θ (log n) time required for
heap sort is O (k log k) i.e.,

 logn loglogn ,  But this is not in

 logn

If
logn

k
log logn

 
 

 
 time required for

heap sort

logn log
log

log logn log logn

  
   

  

1

log
log

loglogn
i.e., logn

loglogn



   
   

    
  
   

  

So, this is in  logn

Hence, answer is (c)
log n

log log n

 
 
 

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.1 Consider the following tree

If the post order traversal gives a b –
c d *+ then the label of the nodes
1, 2, 3... Will be
a) +, -, *, a, b, c, d b) a, -,b, +, c, *, d
c) a, b, c, d, -, *, + d) -,a, b,+, *, c, d

Q.2 Consider the following tree.

If this tree is used for sorting, then a
new number 8 should be placed as
the
a) left child of the node labelled 30
b) right child of the node labelled 5
c) right child of the node labelled 30
d) left child of the node labelled 10

Q.3 The initial configuration of a queue
is a, b, c, d, (‘a’ is in the front end).
To get the configuration d, c, b, a,
one needs a minimum of -
a) 2 deletions and 3 additions
b) 3 deletions and 2 additions
c) 3 deletions and 3 additions
d) 3 deletions and 4 additions

Q.4 The number of possible ordered
trees with 3 nodes A, B, C is
a) 16 b) 12
c) 6 d) 10

Q.5 The number of swappings needed to
sort the number 8, 22, 7, 9, 31, 19, 5,

13 in ascending order, using bubble
sort is
a) 11 b) 12
c) 13 d) 14

Q.6 Given two sorted list of size ‘m’ and
‘n’ respectively. The number of
comparisons needed in the worst
case by the merge sort algorithm
will be
a) m × n
b) Maximum of m, n
c) Minimum of m, n
d) m + n -1

Q.7 If the sequence of operation – push
(1) , push (2) , pop , push (1) , push
(2), pop, pop, pop, push (2), pop, are
performed on a stark, the sequence
of popped out values are
a) 2, 2, 1, 1, 2 b) 2, 2, 1, 2, 2
c) 2, 1, 2, 2, 1 d) 2, 1, 2, 2, 2

Q.8 A hash table with 10 buckets with
one slot per bucket is depicted in
Fig. shown below. The symbols, S1
to S7 are initially entered using a
hash function with linear probing.
The maximum number of
comparisons needed in searching an
item that is not present is

0 S7

1 S1

2

3 S4

4 S2

5

6 S5

7

8 S6

9 S3

ASSIGNMENT QUESTIONS(DATA STRUCTURES)

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

a) 4 b) 5
c) 6 d) 3

Q.9 A binary tree in which every non-
leaf node has non-empty left and
right Sub trees is called a strictly
binary tree. Such a tree with 10
leaves
a) cannot have more than 19 nodes
b) has exactly 19 nodes
c) has exactly 17 nodes
d) cannot have more than 17 nodes

Q.10 The depth of a complete binary tree
with ‘n’ nodes is (log is to the base
two)
a) log (n+1)–1 b) log (n)
c) log (n-1)+1 d) log (n)+1

Q.11 Pre-order is same as
a) depth-first order
b) breath-first order
c) topological order
d) linear order

Q.12 Which of the following traversal
techniques lists the nodes of a
binary search tree in ascending
order?
a) post-order
b) In-order
c) pre-order
d) none of the above

Q.13 The average successful search time
for binary search on ‘10’ items is
a) 2.6 b) 2.7
c) 2.8 d) 2.9

Q.14 A hash function f defined as f (key) =
key mod 7, and linear probing, is
used to insert the keys 37, 38, 72,
48, 98, 11, 56, into a table indexed
from 0 to 6. What will be the
location of key 11?
a) 3 b) 4
c) 5 d) 6

Q.15 The average successful search time
for sequential search on ‘n’ items is
a) n/2 b) (n – 1)/2
c) (n + 1)/2 d) log (n) + 1

Q.16 The running time of an algorithm
T(n),where ‘n’ is the input size is
given by
T(n) = 8T(n/2) + qn, if n > 1
P, if n = 1
Where p, q are constants, the order
of this algorithm is
a) n2 b) nn

c) n3 d) n

Q.17 Let m , n be positive integers. Define
Q(m, n) as
Q(m, n) = 0, if m < n
Q(m - n, n) + p, if m >= n
Then Q(m , 3) is (a div b, gives the
quotient when a is divided by b)
a) a constant b)p×(m mod 3)
c) p × (m div 3) d) 3 × p

Q.18 Six files F1, F2, F3, F4, F5 and F6
have 100, 200, 50, 80, 120, 150
number of records respectively. In
what order should they be stored so
as to optimize access time? Assume
each file is accessed with the same
frequency?
a) F3, F4, F1, F5, F6, F2
b) F2, F6, F5, F1, F4, F3
c) F1, F2, F3, F4, F5, F6
d) Ordering is immaterial as all files

are accessed with the same
frequency.

Q.19 In Q. 18 the average access time will
be
a) 268 units b) 256 units
c) 293 units d) 210 units

Q.20 An algorithm is made up of 2
modules M1 and M2. If order M1 is
f(n) and M2 is g(n) then order of the
algorithm is
a) max(f(n) , g(n))
b) min(f(n), g(n))

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

c) f(n) + g(n)
d) f(n) × g(n)

Q.21 The concept of order (Big O) is
important because
a) It can be used to decide the best

algorithm that solves a given
problem.

b) It determines the maximum size
of a problem that can be solved
in a given system, in a given
amount of time.

c) It is the lower bound of the
growth rate of the algorithm

d) none of the above

Q.22 The running time T(n), where ‘n’ is
the input size of a recursive algorithm
is given as follows.
T(n) = c+T(n-1), if n>1
d, if n <= 1
The order of this algorithm is
a) n2 b) n
c) n3 d) nn

Q.23 There are 4 different algorithm A1,
A2, A3, A4 to solve a given problem
with the order log(n), log(log(n)),
n log(n), n/log(n) respectively.
Which is the best algorithm?
a) A1 b) A2
c) A4 d) A3

Q.24 The number of possible binary trees
with 3 nodes is
a) 12 b) 13
c) 5 d) 15

Q.25 The number of possible binary trees
with 4 nodes is
a) 12 b) 13
c) 14 d) 15

Q.26 The time complexity of an algorithm
T(n), where n is the input size is
given by
T(n) = T(n - 1) + 1/n, if n > 1
1, otherwise
The order of this algorithm is

a) log n b) n
c) n2 d) nn

Q.27 Sorting is useful for
a) report generation
b) minimize the storage needed
c) making searching easier and

efficient
d) responding to queries easily

Q.28 Choose the correct statements.
a) Internal sorting is used if the

number of items to be shorted is
very large

b) External sorting is used if the
number of items to be shorted is
very large

c) External sorting needs auxiliary
storage.

d) Internal sorting needs auxiliary
storage.

Q.29 A sorting technique that guarantees,
that records with the same primary
key occurs in the same order in the
sorted list as in the original
unsorted list is said to be
a) stable b) consistent
c) external d) linear

Q.30 A text is made up of the characters a,
b, c, d, e each occurring with the
probability .12, .4, .15, .08 and .25
respectively. The optimal coding
technique will have the average
length of
a) 2.15 b) 3.01
c) 2.3 d) 1.78

Q.31 In the previous question which of
the following characters will have
codes of length 3?
a) Only c b) Only b
c) b and c d) Only d

Q.32 The running time of an algorithm is
given by
T(n)= T(n-1)+T(n -2)–T(n-3), if n >3
N, otherwise

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

The order of this algorithm is
a) n b) log n
c) nn d) n2

Q.33 What should be the relation
between T(1), T(2) and T(3), so that
Qn. 32, gives an algorithm whose
order is constant?
a) T(1)=T(2)=T(3)
b) T(1)+T(3)=2T(2)
c) T(1) - T(3) = T(3)
d) T(1) + T(2) = T(3)

Q.34 The Ackermann’s function
a) has quadratic time complexity
b) has exponential time complexity
c) can’t be solved iteratively
d) has logarithmic time complexity

Q.35) The order of an algorithm that finds
whether a given Boolean function of
‘n’ variables, produces a 1 is
a) constant b) linear
c) logarithmic d) exponential

Q.36 In evaluating the arithmetic
expression 2*3– (4+5), using stacks
to evaluate its equivalent post-fix
form, which of the following stack
configuration is not possible?

a) b)

c) d)

Q.37 The way a card game player
arranges his cards as he picks them
up one by one, is an example of
a) bubble sort b) selection sort
c) insertion sort d) merge sort

Q.38 You want to check whether a given
set of items is sorted. Which of the
following sorting methods will be
the most efficient if it is already
sorted in
sorted order?
a) bubble sort b)selection sort
c) insertion sort d) merge sort

Q.39 The average number of comparisons
performed by the merge sort
algorithm, in merging two sorted list
of length 2 is
a) 8/3 b) 8/5
c) 11/7 d) 11/6

Q.40 Which of the following sorting
method will be the best if number of
swapping done, is the only measure
of efficiency?
a) bubble sort b) selection sort
c) insertion sort d) merge sort

Q.41 You are asked to sort 15 randomly
generated numbers. You should
prefer
a) bubble sort b) selection sort
c) insertion sort d) merge sort

Q.42 As part of the maintenance work,
you are entrusted with the work or
rearranging the library books in a
shelf in proper order, at the end of
each day. The ideal choice will be
a) bubble sort b)selection sort
c) insertion sort d) merge sort

Q.43 The maximum number of
comparison needed to sort 7 items
using radix sort is (assume each
item is a 4 digit decimal number)
a) 280 b) 40
c) 47 d) 38

Q.44 Which of the following algorithm
exhibits the unnatural behavior that,
minimum number of comparisons
are needed if the list to be sorted is
in the reverse order and maximum

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

number of comparisons are needed
if they are already in sorted order?
a) Heap sort
b) Radix sort
c) Binary insertion sort
d) There can’t be any such sorting

method

Q.45 Which of the following sorting
algorithm has the worst time
complexity of nlog(n)?
a) Heap sort b) Quick sort
c) Insertion sort d)Selection sort

Q.46 Which of the following sorting
methods sorts a given set of items
that is already in sorted order or in
reverse sorted order with equal
speed?
a) Heap sort b) Quick sort
c) Insertion sort d) Selection sort

Q.47 Which of the following algorithm
solves the all-pair shortest path
problem?
a) Dijkstra’s algorithm
b) Floyd’s algorithm
c) Prim’s algorithm
d) Warshall’s algorithm

Q.48 Consider the graph in below Fig.

The third row in the transitive
closure of the above graph is
a) 1, 1, 1 b) 1, 1, 0
c) 1, 0, 0 d) 0, 1, 1

Q.49 The eccentricity of the node labelled
5 in the graph in below Fig. is

a) 6 b) 7
c) 8 d) 5

Q.50 The centre of graph in Qn. 49 is the
node labelled
a) 1 b) 2
c) 3 d) 4

Q.51 Stack A has the entries a, b, c (with a
on top). Stack B is empty. An entry
popped out of stack A can be printed
immediately or pushed to stack B.
An entry popped out of stack B can
only be printed. In this arrangement,
which of the following permutations
of a, b, c is not possible?
a) b a c b) b c a
c) c a b d) a b c

Q.52 In the previous problem, if the stack
A has 4 entities, then the number of
possible permutations will be
a) 24 b) 12
c) 21 d) 14

Q.53 The information about an array that
is used in a program will be stored
in
a) symbol table b) activation table
c) system table d) dope vector

Q.54 Which of the following expressions
access the (i,j)th entry of a (m * n)
matrix stored in column major
form?
a) n×(i-1)+j b) m×(j-1)+i
c) m×(n-j)+j d) n× (m- i)+j

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.55 Sparse matrix has
a) many zero entries
b) many non-zero entries
c) higher dimension
d) none of the above

Q.56 In which of the following cases,
linked list implementation of sparse
matrices consumes the same
memory space as the conventional
way of storing the entire array?
(Assume all data-types need the
same amount of storage.)
a) 5×6 matrix with 9 non-zero entities
b)5×6 matrix with 8 non-zero entities
c) 6×5 matrix with 8 non-zero entities

d)6×5 matrix with 9 non-zero entities

Q.57 The linked list implementation of
sparse matrices is superior to the
generalized dope vector method
became it is
a) conceptually easier
b) completely dynamic
c) efficient in accessing an entry
d) efficient if the sparse matrix is a

band matrix

Q.58) If the dope vector stores the
position is the first and last non-
zero entries in each row, then (i, j)th
entry in the array can be calculated
as (L(x) and F(x) represent the last
and first non-zero entries in row x)

a)        
i-1

k=1

L k –F k +1 + j–F i +1

b)        
i-1

k=1

L k –F k +1 + j–F i

c)        
i-1

k=1

L k –F k +1 + i–F j +1

d)        
1

1

L k –F k 1 i – F j




  
i

k

Q.59 The postfix equivalent of the prefix *
+ a b – c d is
a) ab + cd - * b) ab cd + - *
c) ab + cd * - d) ab + - cd *

Q.60 The order of the binary search
algorithm is
a) n b) n2

c) nlog(n) d) log(n)

Q.61 The average search time of hashing,
with linear probing will be less if the
load factor
a) is far less than one
b) equals one
c) is far greater than one
d) none of the above

Q.62 A hash table can store a maximum of
10 records. Correctly there are
records in location 1, 3, 4, 7, 8, 9, 10.
The probability of a new record
going into location 2, With a hash
function resolving collisions by
linear probing is
a) 0.6 b) 0.1
c) 0.2 d) 0.5

Q.63 Consider a hashing function that
resolves collision by quadratic
probing. Assume the address space
is indexed from 1 to 8. Which of the
following location will never be
probed if a collision occurs at
position 4?
a) 4 b) 5
c) 8 d) 2

Q.64) A hash table has space for 100
records. What is the probability of
collision before the table is 10%
full?
a) 0.45 b) 0.5
c) 0.3 d) 0.34
(approximately)

Q.65) Which of the following remarks
about Trie indexing are true?
a) It is efficient is dealing with

strings of variable length.
b) It is effect in there are few

number of data items.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

c) The number of disk access can’t
exceed the length of the
particular string that is searched.

d) It can handle insertions and
deletions, dynamically and
efficiently.

Q.66 Which of the following remarks
about Tree indexing are true?
a) It is an m-ary tree.
b) It is a searched tree of order m.
c) Successful search should

terminate in left nodes.
d) Unsuccessful search may

terminate at any level of the tree
structure.

Q.67 Pick the correct statements.
a) Sequential file organization is

suitable for batch processing.
b) Sequential file organization is

suitable for interactive
processing.

c) Index Sequential file
organization supports both
interactive processing.

d) Relative file can’t be accessed
sequentially.

Q.68 Stacks cannot be used to
a) Evaluate an arithmetic

expression in postfix form.
b) Implement recursion.
c) Convert a given arithmetic

expression in infix form to its
equivalent postfix form.

d) Allocate resources (like CPU) by
the operating system.

Q.69 Let M be the 3 × 3 , adjacency matrix
corresponding to a given graph of 3
nodes labelled 1, 2, 3. If entry (1 ,
3)in M3 is 2, then the graph could be
a) b)

c) d)

Q.70 Consider the graph in Fig below

What should be the labels of nodes
marked 1 and 2 if the breadth first
traversal yields the list a b c d e?
a) D and E
b) E and D
c) unpredictable
d) none of the above

Q.71 If the depth first search of the given
in Qn. 70 yields the list A B C D E,
then the labels of the nodes marked
1 and 2 will be
a) E and D
b) D and E
c) unpredictable
d) none of the above

Q.72 Which of the following abstract data
types can be used to represent a
many to many relation?
a) Tree b) Plex
c) Graph d) Queue

Q.73 Consider the graph in below Fig.

Which of the following is a valid
topological sorting?
a) A B C D b) B A C D
c) B A D C d) A B D C

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.74 Consider the graph in below Fig.

Which of the following is a valid
strong component?
a) a, c, d b) a, b, d
c) b, c, d d) a, b, c

Q.75 Consider the undirected weighted
graph in below Fig.

The minimum cost spanning tree for
this graph has the cost
a) 18 b) 20
c) 24 d) 22

Q.76 Merge sort uses
a) divide and conquer strategy
b) backtracking approach
c) heuristic search
d) greedy approach

Q.77 The principle of locality justifies the
use of
a) interrupts b) DMA
c) polling d)cache memory

Q.78) For merging two sorted lists of sizes
m and n into a sorted list of size m +
n, we require comparisons of
a) O(m)
b) O(n)
c) O(m + n)
d)O(log(m) + log(n))

Q.79 A binary tree has n leaf nodes. The
number of nodes of degree 2 is in
tree is

a) log2 n b) n - 1
c) n d) 2n

Q.80 The minimum number of edges in a
connected cyclic graph on n vertices
is
a) n - 1 b) n
c) n + 1 d) none of the above

Q.81 The postfix expression for the infix
expression
A + B * (C + D) / F + D * E is:
a) A B + CD + F * / D + E *
b) ABCD + * F / + DE * +
c) A * B + CD / F * DE ++
d) A + * BCD / F * DE ++

Q.82 Which of the following statement is
true?
I. As the number of entries in the

hash table increases, the number
of collision increases.

II. Recursive programs are efficient.
III. The worst time complexity of

Quick sort is O(n2).
IV. Binary search implemented

using a linked list is efficient.
a) I and II b) II and III
c) I and IV d) I and III

Q.83 The number of binary trees with 3
nodes which when traversed in
post-order gives the sequence A, B,
C is
a) 3 b) 9
c) 2 d) 1

Q.84 The minimum number of colours
needed to colour a graph having n
(>3) vertices and 2 edges is
a) 4 b) 3
c) 2 d) 1

Q.85 Which of the following file
organization is preferred for
secondary key procession?
a) Indexed sequential file

organization
b) Two-way linked list

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

c) Inverted file organization
d) Sequential file organization

Q.86 Mr. Fool designed a crazy language
called STUPID that includes the
following features.
+ has procedure over /
+ has procedure over – (binary)
- binary has procedure over *
* and ^ (exponentiation) have the
same procedures.
+ and * associate from right to left.
The rest of the mentioned operators
associate from left to right. Choose
the correct stack priorities Mr. Fool
should assign to+,*, ^, / respectively,
for correctly converting an
arithmetic expression in infix form
to the equivalent postfix form.
a) 5, 2, 2, 4 b) 7, 5, 2, 1
c) 1, 1, 2, 4 d) 5, 4, 3, 1

Q.87 The infix priorities of +, *,^,/ could be

a) 5, 1, 2, 7 b) 7, 5, 2, 1
c) 1, 2, 5, 7 d) 5, 2, 2, 4

Q.88 Mr. Fool’s STUPID language will
evaluate the expression 2*2^3 * 4 to
a) 256 b) 64
c) 412 d) 481

Q.89 The expression 1*2^3 * 4 ^ 5 * 6 will
be evaluated to
a) 3230 b) 16230

c) 49152 d) 173458

Q.90 In a circularly linked list
organization, insertion of a record
involves the modification of
a) no pointer b) 1 pointer
c) 2 pointers d) 3 pointers

Q.91 Stack is useful for implementing
a) radix sort
b) breadth first search
c) recursion
d) depth first search

Q.92 To store details of an employee, a
storage space of 100 characters is
needed. A magnetic tape with a
density of 1000 characters per inch
and an inter-record gap of a 1 inch is
used to store information about all
employees in the company. What
should be the blocking factor so that
the wastage doesn’t exceed one-
third of tape?
a) 0.05 b) 20
c) 10 d) 0.1

Q.93 A machine needs a minimum of 100
sec to sort 1000 names by quick
sort. The minimum time needs to
sort 100 names will be
approximately
a) 50.2 sec b) 6.7 sec
c) 72.7 sec d) 11.2 sec

Q.94 A machine took 200 sec to sort 200
names, using bubble sort. In 800 sec,
it can approximately sort
a) 400 names b) 800 names
c) 750 names c) 800 names

Q.95 The correct order of arrangement of
the names Bradman, Lamb, May,
Boon, Border, Underwood and
Boycott, So that quick sort algorithm
makes the least number of
comparisons is
a) Bradman, Border, Boon, Boycott,

May, Lamb, Underwood
b) Bradman, Border, Boycott, Boon,

May, Underwood, Lamb
c) Underwood, Border, Boon,

Boycott, May, Lamb, Bradman
d) Bradman, May, Lamb, Border,

Boon, Boycott, Underwood

Q.96 Which of the following is useful in
traversing a given graph by breadth
first search?
a) Stack b) Set
c) Least d) Queue

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.97 Which of the following is useful in
implementing quick sort?
a) Stack b) Set
c) Least d) Queue

Q.98 Queue can be used to implement
a) radix sort
b) quick sort
c) recursion
d) depth first search

Q.99 The Expression tree given in Fig
below evaluates to 1, if

a) a=-b and e=0 b)a=-b and e= 1

c) a=b and e=0 d) a=b and e= 1

Q.100 A hash function randomly
distributes records one by one in a
space that can hold x number of
records. The probability that the mt h
record is the first record to result in
collision is
a) (x-1)(x-2)...(x–(m-2))(m-1)/xm-1

b) (x-1)(x-2)...(x–(m-1))(m-1)/xm-1

c) (x-1)(x-2)...(x–(m- 2))(m - 1)/xm

d) (x-1)(x-2)...(x–(m - 1))(m - 1)/xm

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(a) (d) (c) (b) (d) (d) (a) (a) (b) (a) (a) (b) (d) (c) (c)

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

(c) (c) (a) (a) (a) (a) (b) (b) (c) (c) (a) (a) (b) (a) (a)

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

(a) (a) (a) (c) (d) (d) (c) (c) (a) (b) (c) (b) (a) (c) (a)

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

(b) (b) (d) (b) (d) (c) (d) (d) (b) (a) (c) (a) (a) (a) (b)

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

(a) (a) (d) (a) (a) (a) (a) (d) (a) (a) (a) (b) (d) (d) (b)

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

(a) (d) (c) (b) (b) (b) (d) (d) (c) (c) (a) (d) (b) (c) (c)

91 92 93 94 95 96 97 98 99 100

(c) (b) (b) (a) (a) (d) (a) (a) (a) (a)

ANSWER KEY:

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.1 (a)
Post order traversals yields 4, 5, 2, 6,
7, 3, 1. Comparing with a, b, -, c, d, *,
+, we get the labels of nodes 1, 2, 3,
4, 5, 6, 7 as +, -, *, a, b, c, d
respectively.

Q.2 (d)
If it is to be used for sorting, labels
of left child should be less than the
label of the current node. Coming
down the tree, we get left child of
node labelled 10 as correct slot for
8.

Q.3 (c)
Delete a, b, c and then insert c, then
b and then a.

Q.4 (b)
It is 12. The tree may be of depth 2
or 1. If the depth is 2, we have 6
possible trees. This is because one of
three tree nodes A, B, C may be the
root and the next level may be one
of the remaining two nodes. If the
depth is 1, the root may be one of
the 3 nodes A, B, C. Corresponding
to a root say A, Two trees are
possible as this.

This gives us 6 more possibilities.

Q.5 (d)
Number of swaps in 1st iteration: 5
Number of swaps in 2nd iteration: 4
Number of swaps in 3rd iteration: 2
Number of swaps in 4th iteration: 1
Number of swaps in 5th iteration: 1
Number of swaps in 6th iteration: 1
Total = 5+4+2+1+1+1 = 14

Q.6 (d)
The maximum number of
comparisons needed in merging
process of sizes m and n is m+n-1
Each comparison puts one element
in the final sorted array. In the
worst case m+n-1 comparisons are
necessary.

Q.7 (a)
Simple stack operation. Take an
empty stack and perform push and
pop operations in the given
sequence.

Q.8 (a)
It will be equal to the size of biggest
cluster (which is 4 in this case). This
is because, assume a search key
hashing onto bin 8. By linear
probing the next location for
searching is bin 9 then 0 and then 1.
So, maximum comparison is 4. This
logic may not work if deletion
operation is done before the search.

Q.9 (b)
A strictly binary tree with ‘n’ leaves
must have (2n - 1) nodes. Verify for
some small ‘n’. This can be proved
by the principle of mathematical
induction.

Q.10 (a)
If the depth is d, the number of
nodes n will be 2(d + 1) – 1.
So, n + 1 = 2(d + 1) or d = log(n + 1) - 1

Q.11 (a)
Pre-order visits root and move to
left most depth. During back
tracking it visits right sub tree
which is same as depth-first search.

EXPLANATIONS (DATA STRUCTURES)

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.12 (b)
For example, consider the binary
search tree given in Q. 2. The in-
order listing will be 1, 4, 5, 6, 10, 11,
12, 30, i.e., the number arranged in
ascending order.

Q.13 (d)
The 10 items i1, i2, ...i10 may be
arranged in a binary search tree in
Fig below. To search i5, the number
of comparison needed is 1; for i2, it
is 2; for i8 it is 2; for i1 it is 3, and so
on. The average is (1 + (2 + 2) + (3 +
3 + 3 + 3) + (4 + 4 + 4 + 4))/10, i.e.,
2.9.

Q.14 (c)
f(37) = 37 mode 7 = 2. So 37 will be
put in location 2. f(38) = 3 so, 38 will
be in third location. f(72) = 2 so, this
results in a location with linear
probing as the collision resolving
strategy, the alternate location for
72 will be the location 4 (i.e., next
vacant solved in the current
configuration). Continuing this way,
the final configuration will be 98, 56,
37, 38, 72, 11, and 48.

Q.15 (c)
If the search key matches the very
first item, with one comparison we
can terminate. If it’s second, 2
comparisons, etc. So, as average is
(1+2+....+n)/n, i.e., (n+1)/2

Q.16 (c)
By Masters’s theorem.

Q.17 (c)

Let m > n. Let m/n yield quotient x
and remainder y. So m = n*x+y and
 y < div 3 is the quotient when n is
divided by 3. So, many items p is
added, before we terminate
recursion by satisfying the end
condition. Q(m, n) = 0, if m < n,
hence the result.

Q.18 (a)
Since access is sequential, greater
the distance, greater will be access
time. Since all the files are
referenced with equal frequency,
over all access time can be reduced
by arranging them as in (a).

Q.19 (a)
Refer Q. 18. Since each file is
referenced with equal frequency
each record in a particular file can
be referenced with equal frequency
so, average access time will be (25 +
(50 + 40) + (50+80+50) +...)/6=268
(approximately).

Q.20 (a)
By definition of order, there exist
constant c1, c2, n1, n2 such that -
T(n)  c1 × f(n), for all n  n1.
T(n)  c2 × g(n), for all n  n2.
Let N = max (n1, n2) and C =
max(c1, c2) so, T(n)  C × f(n), for
all n  N.
T(n)  C × g(n), for all n  N.
Adding
T(n)  C/2 × (f(n), g(n))
Without loss of generality, let max
(f(n), g(n)) = f(n) So, T(n)  C/2
(f(n) + f(n))  C × f(n).
So, order is f(n) which is max (f(n) ,
g(n)), by our assumption.

Q.22 (b)
By recursive applying the relation
we finally arrive at
T(n-1) = c(n-1)+T(1)=c(n-1)+ d
So, order is n.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.24 (c)

Q.25 (c)
Eight possible binary trees of depth
3 and six possible binary trees of
depth 2. So, altogether 14 binary
trees are possible with 4 nodes.

Q.26 (a)
By substitution method

Q.30 (a)
Using Huffman’s algorithm, code for
a is 1111; b is 0; c is 110; d is 1110;
e is 10. Average code length is
4×12+1×4+3×.15+4×.08+2×.25=
2.15

Q.32 (a)
Let us find what is T(4), T(5), T(6).
T(4)=T(3)+ T(2) – T(1)=3+2 -1 = 4
T(5)=T(4) + T(3)– T(2)=4+ 3 - 2 = 5
T(6)= T(5)+T(4)–T(3)= 5+ 4 - 3 = 6
By induction it can be proved that
T(n) = n. Hence the order is n.

Q.33 (a)
Refer Q. 32. Let T(1) = T(2) = T(3) =
k (say). Then T(4) = k + k – k = k
T(5) = k + k – k = k
By induction it can be proved that
T(n) = k (where k is a constant).

Q.35 (d)
In the worst case it has to check all
the 2n possible input combinations,
which is exponential.

Q.36 (d)
The postfix equivalent 2 3 * 4 5 + - .
For evaluating this using stack,
starting from the left, we have to
scan one by one. If scanned element
is an operand, push. If scanned

element is an operator, pop two
elements, apply the operator on the
popped out entries and push the
result onto the stack. If we follow
this, we can find that configuration
in (d) is not possible.

Q.39 (a)
Merge sort combines two given
sorted lists into one sorted list. For
this problem let the final sorted
order be –a, b, c, d. The two list (of
length two each) should fall into the
one of the following 3 categories.
(I) a, b and c, d
(ii) a, c and b, d
(iii) a, d and b, c
The number of comparisons needed
in each case will be 2, 3, 3. So,
average number of comparisons will
be (2 + 3 + 3)/3 = 8/3
Here is a better way of doing:
Let list L1 have the items a, c and L2
have the items b, d.
The tree drawn below depicts the
different possible cases. (a & b
means a is compared with b. If a is
smaller, the edge will be labelled a.
The number within a circle, beside
the leaf nodes, is the number of
comparisons, needed to reach it)
The five possible trees are –

From the trees, we find there are 6
possible ways. Total number of
comparisons needed is 3 + 3 + 2 + 2

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

+ 3 +3=6 so, average number of
comparisons is 16/6 = 8/3.

Q.43 (a)
The maximum number of
comparison is number of items ×
number of digits. i.e., 7×10× 4 = 280

Q.47 (b)
Dijkstra’s algorithm solved single
source shortest path problem.
Warshall’s algorithm finds transitive
closure of a given graph. Prim’s
algorithm constructs a minimum
cost spanning tree for a given
weighted graph.

Q.48 (d)
Third row corresponds to node 3.
From 3 to 1 there is no path. So the
entry (3, 1) should be zero. Since
there is a path from 3 to 2 and also
from 3 to 3 (i.e. 3 23), the third
row should be 0, 1, 1.

Q.49 (b)
Eccentricity of a given node is the
maximum of minimum path from
other nodes to the given node.
Cost of minimum path from 1 to 5 is 7
Cost of minimum path from 2 to 5 is 6
Cost of minimum path from 3 to 5 is 4
Cost of minimum path from 4 to 5 is 7
Since, the maximum is 7,
eccentricity of node 5 is 7.

Q.50 (d)
Refer Qn. 49.
Find eccentricity of all nodes.
Eccentricity of node 1 is 
Eccentricity of node 2 is 6
Eccentricity of node 3 is 8
Eccentricity of node 4 is 5
Eccentricity of node 5 is 7
Center of graph is the node with
minimum eccentricity.

Q.52 (d)
Total number of possible
permutations for the previous
problem is 5. For the four entries a,
b, c, d the possibilities are a,
followed by permutation of a, b, c
which is 5. b followed by
permutations of a, c, d. Which is 5.
The other possibilities are c, b, a, d,
c, d, b, a ; c, b,
d, a ; d, c, b, a. Totally is 14.

Q.56 (c)
Conventional way needs storage of
m × n.
In the case of linked list
implementation of sparse matrices,
storage needed will be m + 3 × (the
number of non-zero entries).
Only in case (c), both the methods
need the same storage of 30.

Q.59 (a)
The tree whose pre-order traversal
yields * + A B – C D, is given in below
Fig. Write the post-order traversal
of the tree. That is the post-fix form.

Q.60 (b)
Let there be ‘n’ items to be searched,
after the first search the list is
divided into two, each of length n/2.
After the next search, 2 lists, each of
length n/4 and so on. This
successive division has to stop when
the length of list becomes 1. Let it
happen after k steps. After the k
steps, n/2 k = 1.
Solving, n = 2k. Hence the order is
log(n)

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.61 (a)
Load factor is the ratio of number of
records that are currently present
and the total number of records that
can be present. If the load factor is
less, free space will be more. This
means probability of collision is less.
So, the search time will be less.

Q.62 (a)
If the new record hashes onto one of
the six locations 7, 8, 9, 10, 1 or 2,
the location 2 will receive the new
record. The probability is 6/10 (as
10 is the total possible number of
locations).

Q.63 (d)
You can verify that the 1st, 3rd, 5th,
7th....probes check at location 5.
The 2nd, 6th, 10th.... probes check at
location 8.
The 4th, 8th, 12th... probes check at
location 4.
The rest of the address space will
never be probed.

Q.64 (a)
If there is only one record, then the
probability of collision will be 1/100.
If 2, then 2/100 etc., If 9 then
9/100. So, the required probability
is 1 + 2 + 3 ... 9/100 = 0.45.

Q.69 (a)
If the(1 , 3) entry is m3 is 2, it means
there are 2 paths of length 3,
connecting nodes 1 and 3. If you see
the graph in (a), there are 2 paths
connecting 1 and 3, (1  2  3 
3 and 1  3  3  3).

Q.70 (a)
In breadth first traversal the nodes
are searched level by level. Starting
with vertex A the only next choice is
B. Then C, then 1 and lastly 2.
Comparing with ABCDE, (a) is the
correct answer.

Q.71 (a)
In the depth first traversal, we go as
deep as possible before we
backtrack and look for alternate
branches. Here it yields ABC21. So,
labels of needs 1 and 2 should be E
and D respectively.

Q.73 (d)
In topological sorting we have to list
out all the nodes in such a way then
whenever there is an edge
connecting i and j, i should precede j
in the listing. For some graphs, this
is not at all possible, for some this
can be done in more than one way.
(d) is the only correct answer for
this question.

Q.74 (d)
Strong component of a given graph
is the maximal set of vertices i, j in
the set, there is a path connecting i
to j. Obviously vertex ‘d’ can’t be in
the maximal set (as no vertex Can be
reached starting from vertex d). The
correct answer is (d).

Q.75 (b)
Use Prim’s algorithm or Kruskal’s
algorithm and verify the result.

Q.78 (c)
Each comparison will append one
item to the existing merge list. In the
worst case one needs m + n -1
comparisons which is of order m+ n.

Q.79 (b)
It can be proved by induction that a
strictly binary 3 with ‘n’ leaf nodes
will have a total of 2n – 1 nodes.
So number of non-leaf nodes is (2n -
1) – n = n - 1.

Q.82 (d)
Recursive programs take more time
than the equivalent non-recursive
version and so not efficient. This is

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

because of the function call
overhead.
In binary search, Since every time
the current list in probed at the
middle, random access is preferred.
Since linked list does not support
random access, Binary search
implemented this way is inefficient.

Q.83 (d)
The 5 binary trees are

Q.92 (b)
Blocking factor is the number of
logical records that is packed to one
physical record. Here in every 3
inch, there should be 2 inch of
information. Hence 2  10 = 20
logical records.

Q.93 (b)
In the best case quick sort algorithm
makes nlog(n) comparisons. So
1000  log (1000) = 9000
comparisons, which take 100 sec. To
sort 100 names a minimum of 100
(log 100) = 600 comparisons are
needed. This takes 100  600 /
9000 = 6.7 sec.

Q.94 (a)
Let the first element be the pivot
element always. The best way in the
one that splits the list into two equal
parts each time. This is possible if
the pivot element is the median.
Consider the given set of names or
the equivalent set 1, 2, 3, 4, 5, 6, 7.
Four is the median and hence
should be the pivot element. Since
the first element is the pivot
element, 4 should be the first
element. After the first pass, 4 will
be put in the correct place and we
are left which two sub lists 1, 2, 3
and 5, 6, 7. Since 2 is the median of

1, 2, 3 the list should be rearranged
as 2, 1, 3 or 2, 3,1. For similar
reasons 5, 6, 7 should be rearranged
as 6, 5, 7 or 6, 7, 5.

Q.96 (d)
Immediately after visiting a node,
append it to the queue. After visiting
all its children, The node currently
in the head of the queue is deleted.
This process is recursively carried
out on the current head of the
queue, till the queue becomes
empty.

Q.99 (a)
The corresponding expression is –(-
a- b) + e!. This is 1 if a = -b and e is
either 1 or 0, Since 1! = 0! = 1.

Q.100 (a)
Probability for the first record not
colliding is x/x.
Probability for the second record
not colliding is x -1/x.
(This is because one place is already
occupied. So, favorable number of
cases is x - 1).
Probability for the third record not
colliding is x – 2/x.
Probability for the (n -1)th record
not colliding is x – (m - 2)/x.
Now the next (mth) record is
resulting in a collision. Out of the x
places, Each should hash to one of
the (m -1) places already, filled.
So probability is (m -1)/x.
The required probability is
(x/x) (x – 1/x) (x – 2/x)....(x – (m-
2)/x) (m -1/x)

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.1 The recurrence relation for merge
sort (where number of elements is
greater than one) is _____ .
a) T(n) = 2T(n/2) + kn, where k is

constant time required to solve
the problem of size 1

b) T(n) = 4T(n/4) + kn, where k is
constant time required to solve
the problem of size 2

c) T(n) =2T(n/2) + k,where k is
constant time to solve the
problem of size 1.

d) T(n) = 8T(n/2) + 2n

Q.2 The worst case time complexity to
construct max heap is
a) O(n) b) O(logn)
c) O(nlogn) d) O(n2)

Q.3 Let X=(x1, x2, …… , xn) and Y=(y1, y2,
…..yn) be sequences and let Z = (z1,
z2 ….. zk) be any longest common
subsequence of x and y. if xm ≠ yn,
then zk ≠ xm implies that z is a
longest common subsequence of
a) Xm – 1 and Yn – 1 b)Xm – 1 and Yn – 1

c) X and Yn – 1 d) X and Y

Q.4 The cost of minimal spanning tree
(using prim’s algorithm) for below
graph is ______ (root vertex I ‘a’).

a) 37 b) 38
c) 36 d) 28

Q.5 Consider the given below program:
int sum (int n)
{

int sum = n;
for (int k = 1; k < = n; k + +)
{

sum + = k;
}

return sum;
}

What is the step count if
assignment, arithmetic computation
read & print will take one step?
a) n + 5 b) n + 3
c) n + 2 d) n + 9

Q.6 The time complexity for strassen’s
matrix multiplication algorithm is
____.
a) O(n2.81) b) O(n5.68)
c) O(nlogn) d) O(n1/3)

Q.7 Which algorithm makes a locally
optimal choice step by step in the
hope that this choice will lead to
globally optimal solution?
a) Dynamic programming
b) Greedy algorithm
c) Branch and Bound
d) Backtracking

Q.8 Does greedy approach give an
optimal solution for every instance
of knapsack
Problem?
a) Yes
b) No
c) Never gives an optimal solution
d) Greedy approach is not

applicable for knapsack problem

Common data questions: 9 and 10
Consider the given below elements:
24, 30, 22, 64, 48, 96, 74, 73

Q.9 Identify the min heap:
a) b)

ASSIGNMENT QUESTIONS (ALGORITHMS)

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

c) d)

Q.10 Identify the max heap:
a) b)

c) d)

Common data questions: 11 and 12
Consider the following data:
W1 = 2, W2 = 3, W3 = 4, W4 = 1
P1 = 10, P2 = 15, P3 = 5, P4 = 12 and
knapsack capacity = 5

Q.11 What is the maximum possible
profit, using fractional knapsack?
a) 25 b) 32

c) 17 d) 27

Q.12 Which of the following is the
possible combination of weights
for maximum profit using 0/1
knapsack concept?
a) (W1, W2) b) (W2, W4)
c) (W3, W4) d) (W1, W4)

Q.13 Which of the following uses Divide
and Conquer Technique?
(i) Binary search (ii) Quick sort
(iii) Merge sort (iv) Heap sort
a) (i), (ii), (iii) b)(i), (iii), (iv)
c) (ii), (iii), (iv) d) (i), (ii), (iv)

Q.14 Which class consists of problems
that can be solved in O(nk) time

where k is a constant and n is size
of the input to the problem, using
deterministic turning machine.
a) Class NP b)ClassNP–Complete
c) Class P d) Class NP – hard

Q.15 Satisfactory of Boolean formulas is
______ problem.
a) Class P b) Class NP
c) NP – complete d) NP – hard

Q.16 Consider the given below binary
search tree

Which of the following is the
resultant binary search tree after
deletion of 33?
a) d)

c) d)

Q.17 Code blocks allow many
algorithms to be implemented with
a) Clarity b) Elegance
c) Efficiency d) All of the above

Q.18 The development of a dynamic-
programming algorithm can be
broken into a sequence of four
steps, which are given below
randomly.
I. Construct an optimal solution

from computed information
II. Compute the value of an

optimal solution in a bottom-up
fashion.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

III. Characterize the structure of an
optimal solution.

IV. Recursively, define the value of
an optimal solution.

The correct sequence of the above
steps is
a) I, II, III, IV b) IV, III, I, II
c) IV, II, I, III d) III, IV, II, I

Q.19 Which of the following is not an
application of greedy method?
a) Minimum – spanning tree

algorithm
b) Dijkstra’s algorithm for shortest

paths from a single source.
c) Chavatal’s greedy set –

covering
heuristic

d) Assembly line scheduling

Q.20 Which of the following is/are
element(s) of the greedy strategy?
a) Determine the optimal

structure of the problem.
b) Develop a recursive solution.
c) Convert the recursive

algorithm to an iterative
algorithm.

d) Assembly line scheduling

Q.21 Under reasonable assumptions, the
expected time to search for an
element in a hash Table is
a) lg n b) O(n2)
c) O(n) d) 0(1)

Q.22 To handle “collisions” in which
more than one key maps to the
same array index. We
can use
a) chaining
b) open addressing
c) both a and b
d) None of the above

Q.23 Under the assumption of simple
uniform hashing. A hash table in
which collisions are resolved by
chaining, an unsuccessful search
takes expected time.

a) θ(1 + 2∝)2 b) O(∝/2)
c) Ω(∝2) d) θ(1 + ∝)

Q.24 Which of the following is collision
Resolution Method in hashing?
a) Linear Probing
b) Quadratic Probing
c) Both a and b
d) None of the above

Q.25 Which of the following technique
has the greatest number of probe
sequences?
a) Linear Probing
b) Quadratic Probing
c) Double Hashing
d) All are having the same no. of

probe sequences

Q.26) In Quadratic probing if two keys
have the same initial prob position,
then probe sequences are the
same, since h(k1, 0) = h(k2,0)
implies h(k1,i) = h(k2,i). This
properly leads to a milder form of
clustering called
a) primary clustering
b) square clustering
c) secondary clustering
d) super clustering

Q.27) Double hashing improves over
linear or quadratic probing in that
______probe sequence is used
rather than _______ for i= 0……m – 1.
a) θ(m2), θ(m) b)θ(m), θ(m2)
c) θ(1), θ(m) d) θ(m), θ(1)

Q.28) The heap sort procedure takes
_______ time.
a) O(n) b) θ(n)
c) Ω(n) d) O(nlogn)

Q.29) Heap sort algorithm can be
implemented by using
a) Min heap tree
b) Max heap tree
c) Both a and b
d) None of the above

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.30 Turing’s halting problem can be
solved easily by
a) any computer
b) only by super computer
c) it cannot be solved by any

computer
d) None of these

Q.31 For NP-complete problems
a) several polynomial time

algorithms are available
b) no polynomial-time algorithm

is discovered yet
c) polynomial - time algorithms

exist but not discovered
d) polynomial-time algorithms

will not exist, hence cannot be
discovered

Q.32 Which one of the following is a NP-
complete problem finding?

 a) longest simple path
 b) Hamiltonian cycle
 c) 3CNF formula is satisfiable
 d) All are NP-complete Problems

Q.33 Given that p(n) = 10n + 7
 q(n) = 3n2 + 2n + 6

a) function P(n) is asymptotically
bigger than q(n)

b) function P(n) is asymptotically
smaller than q(n)

c) function P(n) is asymptotically
equal to function q(n)

d) Cannot say

Q.34 Given that
 p(n) = 8n4 + 9n2
 q(n) = 100n3 – 3
 for the above mentioned functions

a) P(n) is bigger than q(n)
b) P(n) is smaller than q(n)
c) Both are equal
d) Cannot say

Q.35 Which one of the following is
correct?

 a) 1 < n < n log n < n3 < n! < n2
b) n log n < n < n3< n! < 1 < n2

 c) 1 < n log n < n3< n! < n < n2
d) 1 < n < n log n < n2< n3< n!

Q.36 If P(n) = n2 then which is correct?
a) P(n) = O(n3)
b) P(n) = O(n2)
c) P(n) = O(n4)
d) All of the above

Q.37 For the recurrence

T(n)=2T  n 
 

 +logn which is tight

upper bound
a) T(n) = O(n2)
b) T(n) = O(n3)
c) T(n) = O(log n)
d) T(n) = O(lg n lg lg n)

Q.38 Consider
 T(n) = 9 T (n/3) + n

a) T(n) = θ(n2) b) T(n) = θ(n3)
c) T(n) = Ω(n3) d) T(n) = O(n)

Q.39 We measure the performance of B-

trees
a) By how much computing time

the dynamic - set operations
consume.

b) By how many disk accesses are
performed.

c) Both a and b
d) None of these

Q.40 If n≥1, then for any n-key, B-tree T

of height h and minimum degree t≥
2,

 a) h = n b)
n+1

h<
2

 c) t

n 1
h log

2


 d) None

Q.41 The simplest B-Tree occurs for the

minimum degree
 a) t = 0 b) t = 1

c) t = 2 d) t = ∞

Q.42 For a B-Tree, if t is minimum

degree, every internal node other
than the root has at least
a) t children b) t -1 children
c) t + 1 children d) 2t children

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.43 With minimum degree t=2 at the
 depth h=3 what will be the number
 of nodes (at least)?

 a) 8 b) 7
c) 16 d) 9

Q.44 Prim’s minimum-spanning tree
algorithm and dijkstra’s single-
source shortest-path algorithm use
ideas similar to
a) kruskal’s algorithm
b) Depth first algorithm
c) Breadth first algorithm
d) None

Q.45 In a depth-first search of an
undirected graph G, every edge of
G is
a) Either forward edge or cross

edge
b) Tree edge or Back edge
c) Back edge forward edge
d) Tree edge or Cross edge

Q.46 Which of the following is false?

a) Minimum spanning tree
algorithm is useful in the
design of electronic circuit

b) Kruskal’s algorithm and Prim’s
algorithm both can be speed up
to run in time O(E + Vlogv)

c) Kruskal’s algorithm and Prim’s
algorithm both are greedy
algorithms

d) Prim’s algorithm forms a forest
and Kruskal’s algorithm forms
a tree

Q.47 Match the following:
I. Inorder 1. ABCDEFGHI

II. Preorder 2. DBHEIAFCG
III. Postorder 3. ABDEHICFG
IV. Levelorder 4. DHIEBFGCA

 for the tree

a) I – 2, II – 3, III – 4, IV – 1
b) I – 3, II – 1, III – 4, IV – 2
c) I – 1, II – 2, III – 3, IV – 4
d) I – 4, II – 3, III – 2, IV – 1

Q.48 A simple graph with 5 vertices and

2 components can have at most
a) 6 edges b) 5 edges
c) 3 edges d) 7 edges

Q.49 Let M be a connected map with V

vertices, E edges and R regions.
Then
a) V – E + R = 2 b) V + E – R =

 c) V + 2 = E – R d) V + R = 2 E

Q.50 Starting with edge AB what will be

the minimum spanning tree using
kruskal’s algorithm?

a) AB,BC,CD,DE b) AB,DE,DC,DB

c) AB,BD,DE,DC d) AB,BD,CD,BC

Q.51 In performance analysis we use
_______ and in performance
measurement we use_______.
a) Analytical methods, Conduct

Experiments
b) Conduct Experiments,

Analytical Methods
c) Analytical Method, Analytical

Method
d) Conduct Experiments, Conduct

Experiments

Q.52 Some computer system requires
the user to provide an upper limit
on the amount of time the program
will run. Which one of the
following is/are correct?
a) Once this upper limit is

reached, the program is aborted
b) One would like to provide a

time limit that is just slightly
above the expected run time.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

c) If program runs into an infinite
loop caused by some
discrepancy in the data and you
actually get billed for the
computer time used.

d) All of the above

Q.53 If c is a constant that denotes the
fixed part of the space
requirements and SP denotes the
variable components. Then the
space requirement of any program
may therefore be written as

a)
P

C

S
b) C * SP

c) C + SP d) SP/C

Q.54 What is the time required to
evaluate expression an?
a) O(n) b) O(logn)
c) O(n2) d) O(n3)

Q.55 An NP-Complete problem
a) can be solved easily
b) can be solved but not easily
c) easy but cannot be solved
d) status is unknown

Q.56 What is the time required to
evaluate expression Xn by using
divide and conquer strategy?
a) O(logn) b) O(nlogn)
c) O(n) d) O(n2)

Q.57 Given that
p(n) = 12n + 6
q(n) = 16n + 4
a) both functions are

asymptotically equal
b) function p(n) is asymptotically

smaller than q(n)
c) function p(n) is asymptotically

bigger than q(n)
d) function p(n) and function q(n)

asymptotically not comparable

Q.58 Given that
p(n) = 8n4 + 9n2

q(n) = 100n3 – 3

for the above mentioned functions
a) P(n) is bigger than q(n)
b) P(n) is smaller than q(n)
c) Both are equal
d) Cannot say

Q.59 Which of the following is wrong?
a) f(n) = θ(g(n))  g(n) = θ (f(n))
b) f(n) = θ(g(n))  f(n) = O (g(n))
c) f(n) = θ(g(n))  f(n) = Ω (g(n))
d) f(n) = θ(g(n)) g(n) ≠ θ (f(n))

Q.60 Which of the following is correct?
Worst case _______
a) Provides an upper bound on

running time.
b) An absolute guarantee that the

algorithm would not run
longer, no matter what the
inputs are.

c) Both (a) and (b)
d) None of the above

Q.61 Which of the following is correct?
Best case ________
a) Provides a lower bound on

running
time

b) Input is the one for which the
algorithm runs the fastest

c) Both (a) and (b)
d) None of the above

Q.62 Algorithms for optimization
problems typically go through a
______ with _______ at each step.
a) set of choices, sequence of steps.
b) set of steps
c) sequence of steps, set of choices
d) set of steps, sequence of choices

Q.63 A greedy algorithm always makes
the choice that looks ________ at the
moment.
a) Worst b) Best
c) Average d) Nice

Q.64 Consider the given statements, f(n)
= n3,g(n) = n2

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

(i) f(x) ∈ O(g(x))
(ii) g(x) ∈ O(f(x))
(iii) f(x) ∈ Ω(g(x))
Which of the following is true?
a) (i) and (ii) b) (ii) and (iii)
c) (i), (ii) and (iii) d) Only (ii)

Q.65 The optimal-substructure property
is exploited by both the
a) Non greedy & static

programming
b) Dynamic programming and

Static programming
c) Greedy programming and non

greedy programming
d) Greedy and Dynamic

programming

Q.66 Which of the following is/are
classical optimization problem?
a) 0-1 knapsack problem
b) Fractional knapsack problem
c) Both a and b
d) None of the above

Q.67 Under reasonable assumptions, the
expected time to search for an
element in a hash table is
a) lg n b) O(n2)
c) O(n) d) 0(1)

Q.68 Direct addressing is applicable
when we can afford to allocate an
array that has
a) one position, for every

impossible key.
b) multiple positions, for every

possible key.
c) multiple possible positions for

one duplicate key.
d) one position for every possible

key.

Q.69 To handle “collisions” in which
more than one key maps to the
same array index, we can use ______
a) chaining
b) open addressing
c) both a and b
d) None of the above

Q.70 A “perfect hashing” can support
searches in _____ worst case time.
a) O(n) b) O(n2)
c) O(5) d) O(1)

Q.71 To construct a hash function using
multiplication method which of the
following steps does not involve?
To map the key in the interval 0 to
m.
a) First select a real number

constant k
b) Compute the value of the

fractional part of (key * k)
c) Get the integer_part of the

expression m * fractional_part
d) All of above

Q.72 Which is not an application of Hash
Table?
a) Compiler
b) Assembler
c) Both (a) and (b)
d) None of the above

Q.73 Heap sort combines the better
attributes of the two sorting
algorithms.
a) Bubble, selection
b) Selection, insertion
c) Insertion, merge
d) Merge, quick

Q.74 The technique(s) which is/are
commonly used to compute the
probe sequence required for open
addressing.
a) Linear Probing
b) Quadratic Probing
c) Double Probing
d) All the above

Q.75 In the method of linear probing,
clusters arise since an empty slot is
preceded by i full slots, gets filled
next with probability.

a)
 i 1

m


b) (i + 1) * m

c) (i + 1)m d) (i + 1) (m + 1)

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.76 What is the worst case time
complexity of quick sort?
a) O(n3) b) O(n)
c) O(n2) d) O(n.log n)

Q.77 an + b ∈ O(n2) this statement is
a) true
b) false
c) cannot be determined
d) depends on input size

Q.78 For input size ‘n’ and hash table
size m what is the load factor in
double hashing?
a) α = n * m b) α = n + m
c) α = nm d) α = n/m

Q.79 Assuming uniform hashing an
open address hash table with load
factor α=n/m<1, the expected
number of probes in an
unsuccessful search is almost.

 a)
1

1- α
b) 1 – α

c) 1 + α d) α2

Q.80 The expected height of a randomly
built search tree is
a) O(n) b) O(lgn)
c) O(1) d) None of the above

Q.81 The heap sort procedure takes
time in general
a) O(n) b) θ(n)
c) Ω(n) d) O(nlogn)

Q.82 Heap sort algorithm can be
implemented by using
a) Min heap tree
b) Max heap tree
c) Both a and b
d) None of the above

Q.83 The binary search tree property
allows us to print out all the keys
in a binary search tree in sorted
order by a simple recursive
algorithm, called an
a) preorder tree walk
b) inorder tree walk
c) Postorder tree walk
d) levelorder tree walk

Q.84 Insertion sort
Merge sort
Heap sort
Quick sort
Which is wrong for the above
mentioned sort algorithms?
a) All are comparison sort
b) The lower bound is Ω(n lg n)
c) The upper bound is O (n2)
d) a, b, c are correct

Q.85 Which of the following sorting
algorithms cannot beat the lower
bound?
a) counting sort algorithm
b) radix sort algorithm
c) bucket sort algorithm
d) All A, B, C can beat the lower

bound Ω(nlgn).

Q.86 Under reasonable assumptions, the
expected time to search for an
element in _______ is O(1)
a) Linear search algorithm
b) Binary search algorithm
c) Hashing
d) None of the above

Q.87 B trees are
a) Balanced search trees
b) Designed to work on magnetic

disks
c) Designed to work on direct

access secondary storage
d) All of the above

Q.88 What data structure is used to
implement breadth First search?
a) array b) Linked list
c) Queue d) stack

Q.89 What data structure is used to
implement Depth First search?
a) Linked list b) array
c) stack d) Queue

Q.90 If t is the minimum degree for a
Btree. What is the minimum
number of keys, every node other
than the root must have?
a) t keys b) t + 1 keys
c) log t keys d) t – 1 keys

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.91 For a B-Tree, if t is minimum
degree, every internal node other
than the root has atleast
a) t children b) t – 1 children
c) t +1 children d) 2t children

Q.92 For a B-Tree, if t is minimum degree,

every node can contain atmost
a) t keys b) 2t keys
c) 2t – 1 keys d) 2t + 1 keys

Q.93 Which of the following is not a
Depth
First Search?
a) Pre order b) In order
c) Level order d) Post order

Q.94 Finding the strongly connected
components of a directed graph is
a) Breadth first search
b) Depth First Search
c) Both
d) None of these

Q.95 Which of the following is/are true
about Adjacency lists?
a) can readily be adapted to

represent weighted graphs.
b) There is no quicker way to

determine if a given edge (u, v)
is present in the graph

c) For both directed & undirected
graphs, the desirable property
that the amount of memory it
requires is θ(V+E)

d) All of the above are true

Q.96 In any depth-first search of a graph
G = (V, E), for any two vertices u
and v, which of the following
holds?
a) The intervals [d[u], f[u]] and

[d[v],f[v]] are entirely disjoint,
and neither u nor v is
descendent of the other in the
depth-first forest.

b) The internal [d[u],f[u]] is
contained entirely within the
interval [d[v],f[v]], and u is
descendent of v is a depth-first
tree.

c) The interval [d[v],f[v]] is
contained entirely within the
interval [d[u],f[u]], and v is
descendent u in a depth-first
tree

d) None

Q.97 In a breadth-first search of a
directed graph, the following
property(ies) hold
a) For each tree edge (u,v), we

have d[υ] = d[u] + 1
b) For each cross edge (u,v), we

have d[υ] ≤ d[u] + 1
c) For each back edge (u, v) we

have 0 ≤ d[υ] ≤ d[u]
d) All of the above

Q.98 A shortest-path tree rooted at s is a
directed subgraph G’ = (V’, E’)
where V’  V and E such that
a) V’ is the set of vertices

reachable from s in G.
b) G’ forms a rooted tree with roots
c) for all υ ϵ V’, the unique single

path from s to υ in G’ is a
shortest path from s to υin G.

d) All the above

Q.99 What is the best-case time
complexity of Insertion sort?
a) O(log n) b) O(n log n)
c) O(n2) d) O(n)

Q.100 Which of the following is correct?
a) Shortest - path algorithms

typically rely on the property
that a shortest path between
two vertices contains other
shortest paths within it.

b) The above mentioned property
is hallmark of the applicability
of both dynamic programming
and the greedy method.

c) The Floyd-Warshall algorithm,
which finds shortest paths
between all pairs of vertices is
a dynamic - programming
algorithm.

d) All of the above

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q. 1 (a)
Merge sort recurrence relation is
T(n) = 2T(n/2) + kn
Where k is constant time required to
solve the problem of size 1.

Q. 3 (b)
According to theorem optimal
substructure of an LCS, Z is an ICS of
Xm l and Y.

Q. 4 (a)
In prim’s algorithm we start with
root vertex and grow until the tree
spans all vertices in v. At each step a
light edge is added to the tree.
Step-1:

Step-2:

Step-3:

Step-4:

Step-5:

Step-6:

Step-7:

Step-8:

Step-9:

Cost = 4+8 + 2+ 4 + 2+ 1 + 7 + 9 = 37

Q. 5 (c)
There is no step count for function
definition line, opening and closing
braces.
Step count
Int sum(int n) 0
{ 0

Int sum=0 1
For (int k = 1;
K < n; k + +) n

{
Sum + = k; 1

}
Return to sum; 1
The loop contains single statement
and is executed for n times.
So step count = 1 + n × 1 + 1 = n + 2

EXPLANATIONS

EXPLANATIONS (ALGORITHMS)

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q. 6 (a)
Strassen’s matrix multiplication
chooses sub-matrices to multiply
and its recurrences relation is
T(n) = 7T(n/2) + 0(n2)

And is solved in T(n)= 0(
7

2logn)=
0(n2.81)

Q. 8 (b)
It does not give optimal solution of
0/1 knapsack problem.

Q. 9 (a)
Arrange the given elements in a
binary tree and the tree must be
complete i.e., place a node the right
child of a node if that node has left
child i.e.,

Now check from the last node to
root node such that root contains
minimum
Value compared to its children
otherwise swap those two values.

Q. 10 (c)
First construct complete binary tree
and then check from the last node to
the root such that root node
contains maximum value compared
to its child nodes otherwise swap
the two values. Complete binary tree
fro given data will be

Now check from the bottom of the
tree to the root node such that root
contain maximum value compared
to its children

Q. 11 (b)
W2 = 3 P2 = 15
W4 = 1 P4 = 12
1/2W1 = 1 1/2P1 = 5

W = 5 P = 32

Profit = 32

Q. 12 (b)
Knapsack capacity is 5
In O/I knapsack, either you have to
consider full weight or no weight,
fraction is not allowed.
So, W4 = 1

W2 = 3

Weight = 4
We will get max profit =27

Q. 13 (a)

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Heap sort does not use divide and
conquer technique.

Q. 14 (c)
Class P can be solved in O(nk) times
using deterministic turing machines.

Q. 15 (c)
Satisfiability of Boolean formulas is
NP-complete.

Q. 16 (a)
Whenever a node is detected in a
binary search tree replace that node
value With largest left child subtree
value or smallest right child subtree
value, so
The resultant tree will be

OR

Q. 23 (d)
Under the assumption of simple
uniform hashing, and key k not
already Stored in table is equally
likely to hash to any of the m slots.
The expected time to search to the
end of list T[h(k)] = which has
expected length E[nh (k)] = ∝. Thus
the expected number of elements
examined in an unsuccessful search
is ∝, and the total time required is
θ(1 + ∝).

Q. 26 (c)

As in linear probing, the initial
probe determines the entire
sequence, so only m distinct probe
sequences are used.

Q. 27 (a)
Since each possible (h1(k), h2(k))
pair yields a district probe sequence.
As a Result, the performance of
double hashing appears to be very
close to the Performance of the
“ideal” scheme of uniform hashing.

Q. 29 (c)
Mostly Max heap tree is used but it
is not mandatory on can use min
heap Tree also instead of max heap
tree. It will return a ascending
order.

Q. 31 (b)
No polynomial-time algorithm has
yet been discovered for an NP-
complete Problem, nor has anyone
yet been able to prove that no
polynomial-time algorithm can exist
for anyone of them.

Q. 33 (b)
By definition

2

2 2
n

10n + 7 10/n + 7/n
=

3n + 2n + 6 3 + 2/n + 6/nlim


= 0/3 = 0.
Hence 3n2 + 2n +6 is asymptotically
bigger than 10n + 7.

Q. 35 (d)
1 < n < n log n < n2< n3< n!

Q. 36 (d)
We know f(n) = O(f(n)).
Also we know n2<n3<n4.

Q. 37 (d)
Let S (m) = T (2m)
S(m) = 2 S (m/2) + m ……… (1)
By yielding m = lg n
T(2m) = 2T (2m/2) + m
for (1) S(m) = O(m l g m)

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

So T(n) = T(2m) = O(m l g m)
= O(lg n l g lg n)

Q. 38 (a)
a = 9, b = 3, f(n) = n we can apply
case 1 of master theorem

9
3loglog a 2n b n (n).  

Q. 43 (a)
With minimum degree t and depth h
the number of nodes can be
calculated Using the formula 2th – 1 .

Q. 44 (c)
Given a graph G=(V, E) and a
distinguished source vertex s,
breadth first Search systematically
explores the edges of G to “discover”
every vertex that is reachable from s.

Q. 45 (b)
Let (u, v) be an arbitrary edge of G,
and suppose without loss of
generality That d[u] < d[v]. then, υ
must be discovered and finished
before we finish u (while u is gray),
since υ is gray), since υ is on u’s
adjancy list. If the edge (u, v) is
explored first in the direction from u
to v, then v is undiscovered (white)
until that time, for otherwise we
would have explored this edge
already in the direction from v to u.
thus (u, v) becomes a tree edge. If (u,
v) is explored first in the direction
from v to u, then (u, v) is a back
edge, since u is still gray at the time
the edge is first explored.

Q. 46 (d)
Prim’s algorithm forms a simple
tree, Kruskal’s algorithm may form a
forest.

Q. 47 (a)
Apply recursive algorithm
Preorder Root Left Right
Inorder Left Root Right
Postorder Left Right Root

Q. 48 (a)

Formula
(n k)(n k 1)

2

  

Q. 71 (d)
Constant k lies in the interval 0 to 1.
Such that it is neither close to 0 nor
too close to 1 fractional part of key *
k is mapped into interval 0 to m.

Q. 73 (c)
Like merge sort, but unlike insertion
sort, heapsort’s running time
0(nlogn).
Like insertion sort, but unlike merge
sort, heap sort sorts in place: only a
constant number of array elements
are stored outside the input array at
time.

Q. 74 (d)
To perform insertion using open
addressing, we successively examine,
or probe the hash table until we find
an empty slot in which to put the
key.

Q. 75 (a)
Because the initial probe determines
the entire probe sequence there are
only m distinct probe sequences.

Q. 76 (c)
It occurs when pivot divides the
array into two parts of size n-1 and
0.

Q. 77 (a)
Since n =O(n2)

Q. 78 (d)
Like Analysis of chaining analysis of
open addressing is expressed in
terms of load factor ∝ = n/m. of-
course with open addressing, we
have at most one element per slot,
and thus n ≤ m, which implies
∝ ≤ 1.

Q. 79 (a)

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q. 80 (b)
In practice, we cannot always
guarantee that binary search trees
are built randomly but there are
variations of binary search trees
whose worst-case performance on
basic operations can guaranteed to
be height O(lgn)

Q. 82 (c)
Mostly Max heap tree is used but it
is not mandatory on can use min
heap tree also instead of max heap
tree. It will return a ascending
order.

Q. 93 (c)
Level order search is a Breadth first
search.

Q. 95 (d)
Let G = (V, E) be a weighted graph
with weight function ω. The weight
ω(u , v) of the edge (u , v) ∈ E is
simply stored with vertex ϑ is u’s
adjacency list. The adjacency list
representation is quite robust in
that it can be modified to support
many other graph variants.

Q. 97 (d)
There is no forward edge.

Q. 99 (d)
Best case of insertion sort is O(n)

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

	DSA(2018)-1-115
	theory part
	Main Page
	Syllabus
	DSA (2018)-4-79
	DSA (2018)-1-113
	DSA (2018)
	combine theory+gate que
	combine theory
	1.Introduction to Data Structure
	2.Stack ^0 Queue
	3.Sorting & Searching
	4.Tree
	5. Heap & Height Balanced Tree
	6. Introduction to Graph Theory
	7. Design Techniques
	GATE Syllabus

	DSA GATE QUE.
	1. Programing- Ques
	1. Programing-Sol
	2. Arrays -Ques
	2.Arrays -Sol
	3. Stacks ^0 Queues -Ques
	3. Stacks & Queues- Sol
	4. Linked List -Ques

	DSA(2018)-116-116
	DSA GATE QUE.
	5. Trees - Que

	DSA(2018)-117-218
	DSA GATE QUE.
	5. Trees - Sol
	6. Graphs - Que
	6. Graphs - Sol
	7. Hashing - Que
	7. Hashing - Sol

	lgorithm gate que
	1. Algorithm Analysis & Asymptotic Notations - Que
	1. Algorithm Analysis ^0 Asymptotic Notations- solut
	2. Divide & Conquer -Ques
	2. Divide & Conquer -Sol
	3. Greedy Method -Ques
	3.Greedy Method - Sol
	4. Dynamic Programming -Ques
	4. Dynamic Programming -Sol
	5. P & NP Concepts -Que
	5. P ^0 NP Concepts - Sol
	6. Miscellaneous Topics- Que
	6. Miscellaneous Topics-Solu

	assignment
	ASSIGNMENT QUESTION (DATA STRECTURE)
	ASSIGNMENT SOLUTION (DATA STRUCTURE)
	ASSIGNMENT QUESTION (ALGORITHM)
	ASSIGNMENT SOLUTION (ALGORITHM)

